[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.01503.html
   My bibliography  Save this paper

On Drawdown-Modulated Feedback Control in Stock Trading

Author

Listed:
  • Chung-Han Hsieh
  • B. Ross Barmish
Abstract
Control of drawdown, that is, the control of the drops in wealth over time from peaks to subsequent lows, is of great concern from a risk management perspective. With this motivation in mind, the focal point of this paper is to address the drawdown issue in a stock trading context. Although our analysis can be carried out without reference to control theory, to make the work accessible to this community, we use the language of feedback systems. The takeoff point for the results to follow, which we call the Drawdown Modulation Lemma, characterizes any investment which guarantees that the percentage drawdown is no greater than a prespecified level with probability one. With the aid of this lemma, we introduce a new scheme which we call the drawdown-modulated feedback control. To illustrate the power of the theory, we consider a drawdown-constrained version of the well-known Kelly Optimization Problem which involves maximizing the expected logarithmic growth of the trader's account value. As the drawdown parameter dmax in our new formulation tends to one, we recover existing results as a special case. This new theory leads to an optimal investment strategy whose application is illustrated via an example with historical stock-price data.

Suggested Citation

  • Chung-Han Hsieh & B. Ross Barmish, 2017. "On Drawdown-Modulated Feedback Control in Stock Trading," Papers 1710.01503, arXiv.org.
  • Handle: RePEc:arx:papers:1710.01503
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.01503
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leonard Maclean & Edward Thorp & William Ziemba, 2010. "Long-term capital growth: the good and bad properties of the Kelly and fractional Kelly capital growth criteria," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 681-687.
    2. Klass, Michael J. & Nowicki, Krzysztof, 2005. "The Grossman and Zhou investment strategy is not always optimal," Statistics & Probability Letters, Elsevier, vol. 74(3), pages 245-252, October.
    3. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    4. L. C. MacLean & W. T. Ziemba & G. Blazenko, 1992. "Growth Versus Security in Dynamic Investment Analysis," Management Science, INFORMS, vol. 38(11), pages 1562-1585, November.
    5. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    6. Lisa R. Goldberg & Ola Mahmoud, 2014. "Drawdown: From Practice to Theory and Back Again," Papers 1404.7493, arXiv.org, revised Sep 2016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korn, Olaf & Möller, Philipp M. & Schwehm, Christian, 2019. "Drawdown measures: Are they all the same?," CFR Working Papers 19-04, University of Cologne, Centre for Financial Research (CFR).
    2. Chung-Han Hsieh, 2020. "Generalization of Affine Feedback Stock Trading Results to Include Stop-Loss Orders," Papers 2004.12848, arXiv.org.
    3. Philipp M. Möller, 2018. "Drawdown Measures And Return Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-42, November.
    4. Wu, Mu-En & Tsai, Hui-Huang & Chung, Wei-Ho & Chen, Chien-Ming, 2020. "Analysis of Kelly betting on finite repeated games," Applied Mathematics and Computation, Elsevier, vol. 373(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    2. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    3. Chung-Han Hsieh & B. Ross Barmish, 2017. "On Inefficiency of Markowitz-Style Investment Strategies When Drawdown is Important," Papers 1710.01501, arXiv.org, revised Aug 2018.
    4. Chung-Han Hsieh, 2023. "On Data-Driven Drawdown Control with Restart Mechanism in Trading," Papers 2303.02613, arXiv.org.
    5. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
    6. Philipp M. Möller, 2018. "Drawdown Measures And Return Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-42, November.
    7. Chung-Han Hsieh, 2022. "On Solving Robust Log-Optimal Portfolio: A Supporting Hyperplane Approximation Approach," Papers 2202.03858, arXiv.org.
    8. Chen, Xinfu & Landriault, David & Li, Bin & Li, Dongchen, 2015. "On minimizing drawdown risks of lifetime investments," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 46-54.
    9. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    10. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Portfolio selection with a drawdown constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3171-3189, November.
    11. Schuhmacher, Frank & Eling, Martin, 2011. "Sufficient conditions for expected utility to imply drawdown-based performance rankings," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2311-2318, September.
    12. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    13. Drenovak, Mikica & Ranković, Vladimir & Urošević, Branko & Jelic, Ranko, 2022. "Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm," Finance Research Letters, Elsevier, vol. 46(PA).
    14. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    15. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    16. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    17. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    18. Michael J. Klass & Krzysztof Nowicki, 2010. "On The Consumption/Distribution Theorem Under The Long-Run Growth Criterion Subject To A Drawdown Constraint," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(06), pages 931-957.
    19. Stanislaus Maier-Paape & Andreas Platen & Qiji Jim Zhu, 2019. "A General Framework for Portfolio Theory. Part III: Multi-Period Markets and Modular Approach," Risks, MDPI, vol. 7(2), pages 1-31, June.
    20. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.01503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.