[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1612.01013.html
   My bibliography  Save this paper

Long-Term Growth Rate of Expected Utility for Leveraged ETFs: Martingale Extraction Approach

Author

Listed:
  • Tim Leung
  • Hyungbin Park
Abstract
This paper studies the long-term growth rate of expected utility from holding a leveraged exchanged-traded fund (LETF), which is a constant proportion portfolio of the reference asset. Working with the power utility function, we develop an analytical approach that employs martingale extraction and involves finding the eigenpair associated with the infinitesimal generator of a Markovian time-homogeneous diffusion. We derive explicitly the long-term growth rates under a number of models for the reference asset, including the geometric Brownian motion model, GARCH model, inverse GARCH model, extended CIR model, 3/2 model, quadratic model, as well as the Heston and 3/2 stochastic volatility models. We also investigate the impact of stochastic interest rate such as the Vasicek model and the inverse GARCH short rate model. We determine the optimal leverage ratio for the long-term investor and examine the effects of model parameters.

Suggested Citation

  • Tim Leung & Hyungbin Park, 2016. "Long-Term Growth Rate of Expected Utility for Leveraged ETFs: Martingale Extraction Approach," Papers 1612.01013, arXiv.org.
  • Handle: RePEc:arx:papers:1612.01013
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1612.01013
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Lars Peter Hansen & José A. Scheinkman, 2009. "Long-Term Risk: An Operator Approach," Econometrica, Econometric Society, vol. 77(1), pages 177-234, January.
    3. Jaroslav Borovička & Mark Hendricks & José A. Scheinkman, 2011. "Risk-Price Dynamics," Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 3-65, Winter.
      • Jaroslav Borovička & Lars Peter Hansen & Mark Hendricks & José A. Scheinkman, 2009. "Risk Price Dynamics," NBER Working Papers 15506, National Bureau of Economic Research, Inc.
      • Jaroslav Borovicka & Lars Peter Hansen & Mark Hendricks & Jose A. Scheinkman, 2009. "Risk Price Dynamics," Working Papers 1393, Princeton University, Department of Economics, Econometric Research Program..
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Lars Peter Hansen, 2012. "Dynamic Valuation Decomposition Within Stochastic Economies," Econometrica, Econometric Society, vol. 80(3), pages 911-967, May.
    6. Tim Leung & Brian Ward, 2015. "The golden target: analyzing the tracking performance of leveraged gold ETFs," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(3), pages 278-297, August.
    7. Vadim Linetsky, 2004. "The Spectral Decomposition Of The Option Value," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 337-384.
    8. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Tim Leung & Ronnie Sircar, 2015. "Implied Volatility of Leveraged ETF Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(2), pages 162-188, April.
    11. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    12. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    13. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    14. Lingjiong Zhu, 2013. "Optimal Strategies for a Long-Term Static Investor," Papers 1311.6179, arXiv.org, revised Oct 2014.
    15. Paolo Guasoni & Eberhard Mayerhofer, 2015. "The Limits of Leverage," Papers 1506.02802, arXiv.org, revised Oct 2017.
    16. Likuan Qin & Vadim Linetsky, 2016. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term Pricing," Operations Research, INFORMS, vol. 64(1), pages 99-117, February.
    17. Likuan Qin & Vadim Linetsky, 2014. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing," Papers 1411.3075, arXiv.org, revised Sep 2015.
    18. Tim Leung & Matthew Lorig & Andrea Pascucci, 2014. "Leveraged {ETF} implied volatilities from {ETF} dynamics," Papers 1404.6792, arXiv.org, revised Apr 2015.
    19. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Leung & Hyungbin Park & Heejun Yeo, 2023. "Robust Long-Term Growth Rate of Expected Utility for Leveraged ETFs," Papers 2310.02084, arXiv.org.
    2. Nian Yao, 2018. "Optimal leverage ratio estimate of various models for leveraged ETFs to exceed a target: Probability estimates of large deviations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-37, June.
    3. Hyungbin Park, 2021. "Modified Mean-Variance Risk Measures for Long-Term Portfolios," Mathematics, MDPI, vol. 9(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nian Yao, 2018. "Optimal leverage ratio estimate of various models for leveraged ETFs to exceed a target: Probability estimates of large deviations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-37, June.
    2. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    3. Likuan Qin & Vadim Linetsky, 2014. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing," Papers 1411.3075, arXiv.org, revised Sep 2015.
    4. Tim Leung & Hyungbin Park & Heejun Yeo, 2023. "Robust Long-Term Growth Rate of Expected Utility for Leveraged ETFs," Papers 2310.02084, arXiv.org.
    5. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    6. repec:uts:finphd:40 is not listed on IDEAS
    7. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    8. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    9. repec:wyi:journl:002117 is not listed on IDEAS
    10. Tim Leung & Brian Ward, 2018. "Dynamic Index Tracking and Risk Exposure Control Using Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(2), pages 180-212, March.
    11. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    12. repec:wyi:journl:002142 is not listed on IDEAS
    13. Hyungbin Park & Heejun Yeo, 2022. "Dynamic and static fund separations and their stability for long-term optimal investments," Papers 2212.00391, arXiv.org, revised Mar 2023.
    14. Bin Chen & Yongmiao Hong, 2013. "Characteristic Function-Based Testing for Multifactor Continuous-Time Markov Models via Nonparametri," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    15. Lingjiong Zhu, 2013. "Optimal Strategies for a Long-Term Static Investor," Papers 1311.6179, arXiv.org, revised Oct 2014.
    16. Likuan Qin & Vadim Linetsky, 2016. "Long-Term Factorization of Affine Pricing Kernels," Papers 1610.00778, arXiv.org, revised Jul 2017.
    17. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    18. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    19. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    20. Likuan Qin & Vadim Linetsky, 2016. "The Long Bond, Long Forward Measure and Long-Term Factorization in Heath-Jarrow-Morton Models," Papers 1610.00818, arXiv.org, revised Jul 2017.
    21. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    22. repec:wyi:journl:002108 is not listed on IDEAS
    23. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    24. Hyungbin Park, 2015. "Sensitivity Analysis of Long-Term Cash Flows," Papers 1511.03744, arXiv.org, revised Sep 2018.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1612.01013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.