[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0911.0928.html
   My bibliography  Save this paper

Empirical asset pricing with nonlinear risk premia

Author

Listed:
  • Aleksandar Mijatovic
  • Paul Schneider
Abstract
In this paper we introduce a simple continuous-time asset pricing framework, based on general multi-dimensional diffusion processes, that combines semi-analytic pricing with a nonlinear specification for the market price of risk. Our framework guarantees existence of weak solutions of the nonlinear SDEs under the physical measure, thus allowing to work with nonlinear models for the real world dynamics not considered in the literature so far. It emerges that the additional flexibility in the time series modelling is econometrically relevant: a nonlinear stochastic volatility diffusion model for the joint time series of the S&P 100 and the VXO implied volatility index data shows superior forecasting power over the standard specifications for implied and realized variance forecasting.

Suggested Citation

  • Aleksandar Mijatovic & Paul Schneider, 2009. "Empirical asset pricing with nonlinear risk premia," Papers 0911.0928, arXiv.org.
  • Handle: RePEc:arx:papers:0911.0928
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0911.0928
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    3. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    4. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    5. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    6. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    7. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    8. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    9. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    10. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    11. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    12. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    2. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    3. Pollastri, Alessandro & Rodrigues, Paulo & Schlag, Christian & Seeger, Norman J., 2023. "A jumping index of jumping stocks? An MCMC analysis of continuous-time models for individual stocks," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 322-341.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    2. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    3. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    4. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    5. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    6. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2018. "Crash Risk in Currency Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 137-170, February.
    7. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    8. Neil Shephard & Torben Andersen, 2008. "Stochastic Volatility: Origins and Overview," Economics Papers 2008-W04, Economics Group, Nuffield College, University of Oxford.
    9. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2012. "Sources of Risk in Currency Returns," CEPR Discussion Papers 8745, C.E.P.R. Discussion Papers.
    10. Olesia Verchenko, 2011. "Testing option pricing models: complete and incomplete markets," Discussion Papers 38, Kyiv School of Economics.
    11. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    12. Markellos, Raphael N. & Psychoyios, Dimitris, 2018. "Interest rate volatility and risk management: Evidence from CBOE Treasury options," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 190-202.
    13. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    14. repec:wyi:journl:002109 is not listed on IDEAS
    15. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    16. Li, Gang & Zhang, Chu, 2013. "Diagnosing affine models of options pricing: Evidence from VIX," Journal of Financial Economics, Elsevier, vol. 107(1), pages 199-219.
    17. Li, Minqiang, 2010. "A damped diffusion framework for financial modeling and closed-form maximum likelihood estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 132-157, February.
    18. Tao Chen & Yixuan Li & Renfang Tian, 2023. "A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
    19. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    20. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    21. Aït-Sahalia, Yacine & Amengual, Dante & Manresa, Elena, 2015. "Market-based estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 187(2), pages 418-435.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0911.0928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.