[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0101371.html
   My bibliography  Save this paper

Multi-dimensional Rational Bubbles and fat tails: application of stochastic regression equations to financial speculation

Author

Listed:
  • Y. Malevergne

    (Univ. Nice/CNRS)

  • D. Sornette

    (Univ. Nice/CNRS and UCLA)

Abstract
We extend the model of rational bubbles of Blanchard and of Blanchard and Watson to arbitrary dimensions d: a number d of market time series are made linearly interdependent via d times d stochastic coupling coefficients. We first show that the no-arbitrage condition imposes that the non-diagonal impacts of any asset i on any other asset j different from i has to vanish on average, i.e., must exhibit random alternative regimes of reinforcement and contrarian feedbacks. In contrast, the diagonal terms must be positive and equal on average to the inverse of the discount factor. Applying the results of renewal theory for products of random matrices to stochastic recurrence equations (SRE), we extend the theorem of Lux and Sornette (cond-mat/9910141) and demonstrate that the tails of the unconditional distributions associated with such d-dimensional bubble processes follow power laws (i.e., exhibit hyperbolic decline), with the same asymptotic tail exponent mu

Suggested Citation

  • Y. Malevergne & D. Sornette, 2001. "Multi-dimensional Rational Bubbles and fat tails: application of stochastic regression equations to financial speculation," Papers cond-mat/0101371, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0101371
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0101371
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lux, Thomas & Sornette, Didier, 2002. "On Rational Bubbles and Fat Tails," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(3), pages 589-610, August.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    4. Adam, M C & Szafarz, A, 1992. "Speculative Bubbles and Financial Markets," Oxford Economic Papers, Oxford University Press, vol. 44(4), pages 626-640, October.
    5. Olivier J. Blanchard & Mark W. Watson, 1982. "Bubbles, Rational Expectations and Financial Markets," NBER Working Papers 0945, National Bureau of Economic Research, Inc.
    6. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    7. Camerer, Colin, 1989. "Bubbles and Fads in Asset Prices," Journal of Economic Surveys, Wiley Blackwell, vol. 3(1), pages 3-41.
    8. Blanchard, Olivier Jean, 1979. "Speculative bubbles, crashes and rational expectations," Economics Letters, Elsevier, vol. 3(4), pages 387-389.
    9. D. Sornette, 2000. ""Slimming" of power law tails by increasing market returns," Papers cond-mat/0010112, arXiv.org, revised Sep 2001.
    10. Shleifer, Andrei, 2000. "Inefficient Markets: An Introduction to Behavioral Finance," OUP Catalogue, Oxford University Press, number 9780198292272.
    11. Flood, Robert P. & Garber, Peter M. & Scott, Louis O., 1984. "Multi-country tests for price level bubbles," Journal of Economic Dynamics and Control, Elsevier, vol. 8(3), pages 329-340, December.
    12. De Vries, C.G. & Leuven, K.U., 1994. "Stylized Facts of Nominal Exchange Rate Returns," Papers 94-002, Purdue University, Krannert School of Management - Center for International Business Education and Research (CIBER).
    13. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Sornette, 2000. ""Slimming" of power law tails by increasing market returns," Papers cond-mat/0010112, arXiv.org, revised Sep 2001.
    2. Lux, Thomas & Sornette, Didier, 2002. "On Rational Bubbles and Fat Tails," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(3), pages 589-610, August.
    3. Sornette, D., 2002. "“Slimming” of power-law tails by increasing market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 403-418.
    4. Sornette, D & Malevergne, Y, 2001. "From rational bubbles to crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 40-59.
    5. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    6. Y. Malevergne & V. F. Pisarenko & D. Sornette, 2003. "Empirical Distributions of Log-Returns: between the Stretched Exponential and the Power Law?," Papers physics/0305089, arXiv.org.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    8. Ariane Szafarz, 2015. "Market Efficiency and Crises:Don’t Throw the Baby out with the Bathwater," Bankers, Markets & Investors, ESKA Publishing, issue 139, pages 20-26, November-.
    9. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    10. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    11. Zhou, Wei-Xing & Sornette, Didier, 2003. "Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 543-583.
    12. Vogel, Harold L. & Werner, Richard A., 2015. "An analytical review of volatility metrics for bubbles and crashes," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 15-28.
    13. Ariane Szafarz, 2009. "How Did Financial-Crisis-Based Criticisms of Market Efficiency Get It So Wrong?," Working Papers CEB 09-048.RS, ULB -- Universite Libre de Bruxelles.
    14. Chris Brooks & Apostolos Katsaris, 2002. "Forecasting the Collapse of Speculative Bubbles: An Empirical Investigation of the S&P 500 Composite Index," ICMA Centre Discussion Papers in Finance icma-dp2002-04, Henley Business School, University of Reading.
    15. Kaizoji, Taisei & Leiss, Matthias & Saichev, Alexander & Sornette, Didier, 2015. "Super-exponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 289-310.
    16. Taisei Kaizoji, 2005. "Comparison of volatility distributions in the periods of booms and stagnations: an empirical study on stock price indices," Papers physics/0506114, arXiv.org.
    17. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    18. Anderson, Keith & Brooks, Chris & Katsaris, Apostolos, 2010. "Speculative bubbles in the S&P 500: Was the tech bubble confined to the tech sector?," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 345-361, June.
    19. Harras, Georges & Sornette, Didier, 2011. "How to grow a bubble: A model of myopic adapting agents," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 137-152.
    20. Jerome L Kreuser & Didier Sornette, 2017. "Super-Exponential RE Bubble Model with Efficient Crashes," Swiss Finance Institute Research Paper Series 17-33, Swiss Finance Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0101371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.