(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2017009.html
   My bibliography  Save this paper

On asymptotic theory for ARCH(infinite) models

Author

Listed:
  • Hafner, Christian
  • Preminger, Arie
Abstract
ARCH(infinite) models nest a wide range of ARCH and GARCH models including models with long memory in volatility. The existing literature on such models is quite restrictive in terms of existence of moments. However, the popular FIGARCH, one version of a long memory in volatility model, does not have finite second moments and rarely satisfies the moment conditions of the existing literature. This paper considerably weakens the moment assumptions of a general ARCH(infinite) class of models, and develops the theory for consistency and asymptotic normality of the quasi maximum likelihood estimator.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hafner, Christian & Preminger, Arie, 2017. "On asymptotic theory for ARCH(infinite) models," LIDAM Discussion Papers ISBA 2017009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2017009
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A185255/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christian Conrad & Berthold R. Haag, 2006. "Inequality Constraints in the Fractionally Integrated GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 413-449.
    2. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    3. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    4. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    5. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    6. Douc, Randal & Roueff, François & Soulier, Philippe, 2008. "On the existence of some processes," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 755-761, May.
    7. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    10. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    11. Kazakevičius, Vytautas & Leipus, Remigijus, 2002. "On Stationarity In The Arch(∞) Model," Econometric Theory, Cambridge University Press, vol. 18(1), pages 1-16, February.
    12. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Li, Muyi & Li, Wai Keung & Li, Guodong, 2015. "A new hyperbolic GARCH model," Journal of Econometrics, Elsevier, vol. 189(2), pages 428-436.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Christian M. Hafner & Arie Preminger, 2017. "On Asymptotic Theory for ARCH (∞) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 865-879, November.
    5. Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2004. "LARCH, leverage, and long memory," LSE Research Online Documents on Economics 294, London School of Economics and Political Science, LSE Library.
    6. Liudas Giraitis & Remigijus Leipus & Peter M Robinson & Donatas Surgailis, 2003. "LARCH, Leverage and Long Memory," STICERD - Econometrics Paper Series 460, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. repec:wyi:journl:002190 is not listed on IDEAS
    8. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    9. Carl Lönnbark, 2016. "Asymmetry with respect to the memory in stock market volatilities," Empirical Economics, Springer, vol. 50(4), pages 1409-1419, June.
    10. Liudas Giraitis, 2004. "LARCH, Leverage, and Long Memory," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 177-210.
    11. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    12. Peter M Robinson & Paolo Zaffaroni, 2005. "Pseudo-Maximum Likelihood Estimation of ARCH(8) Models," STICERD - Econometrics Paper Series 495, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Muyi Li & Wai Keung Li & Guodong Li, 2013. "On Mixture Memory Garch Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 606-624, November.
    14. Dahl Christian M & Iglesias Emma, 2011. "Modeling the Volatility-Return Trade-Off When Volatility May Be Nonstationary," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-32, February.
    15. Marc Henry & Peter M Robinson, 1998. "Long and Short Memory Conditional Heteroscedasticity in Estimating the Memory Parameter of Levels - (Now published in Econometric Theory, 15 (1999), pp.299-336.)," STICERD - Econometrics Paper Series 357, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Robinson, Peter M. & Zaffaroni, Paolo, 2005. "Pseudo-maximum likelihood estimation of ARCH(∞) models," LSE Research Online Documents on Economics 58182, London School of Economics and Political Science, LSE Library.
    17. Robinson, Peter M. & Zafaroni, Paolo, 2005. "Pseudo-maximum likelihood estimation of ARCH models," LSE Research Online Documents on Economics 4544, London School of Economics and Political Science, LSE Library.
    18. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    19. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    20. Pan, Qunxing & Li, Peng & Du, Xiuli, 2023. "An improved FIGARCH model with the fractional differencing operator (1-νL)d," Finance Research Letters, Elsevier, vol. 55(PB).
    21. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2017009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.