[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aeg/wpaper/2010-4.html
   My bibliography  Save this paper

An algorithm for routing optimization in DiffServ-aware MPLS networks

Author

Listed:
  • Luigi Atzori

    (Dipartimento di Ingegneria Elettrica ed Elettronica Universita' di Cagliari)

  • Fabio D'Andreagiovanni

    (Dipartimento di Informatica e Sistemistica, Universita' di Roma "Sapienza")

  • Carlo Mannino

    (Dipartimento di Informatica e Sistemistica, Universita' di Roma "Sapienza")

  • Tatiana Onali

    (Dipartimento di Ingegneria Elettrica ed Elettronica Universita' di Cagliari)

Abstract
This paper addresses the constrained-based routing problem in DiffServaware MPLS networks. We consider a dynamic context in which new requests appear over time, asking for reconfigurations of the previous allocation. In the classical approach, a multi-phase heuristic procedure is adopted: the new requests are evaluated considering available bandwidth; if the bandwidth is not sufficient, preemption and rerouting of one or more connections are performed in sequence. As an alternative, we propose a single-phase approach that simultaneously takes into account both preemption and rerouting. In contrast with the standard approach, we always find an optimal solution when enough bandwidth is available. Otherwise, we apply a heuristic post-processing procedure in order to minimize unsatisfied commodities. The routing problem is modeled as a Multicommodity Flow Problem (MCFP) with side constraints, which is solved by a Column Generation approach. Namely, a sequence of restricted MCFPs is solved, by including new routing paths only if necessary. When new requests are routed, the use of existing paths is preferred in order to reduce preemption. Computational experience on real networks shows that the overall approach is able to (i) obtain a good exploitation of the network resources, (ii) achieve a remarkable acceptance rate and, (iii) hold down the impact of rerouting.

Suggested Citation

  • Luigi Atzori & Fabio D'Andreagiovanni & Carlo Mannino & Tatiana Onali, 2010. "An algorithm for routing optimization in DiffServ-aware MPLS networks," DIS Technical Reports 2010-04, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
  • Handle: RePEc:aeg:wpaper:2010-4
    as

    Download full text from publisher

    File URL: http://www.dis.uniroma1.it/~bibdis/RePEc/aeg/wpaper/2010-04.pdf
    File Function: First version, 2010
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaj Holmberg & Di Yuan, 2003. "A Multicommodity Network-Flow Problem with Side Constraints on Paths Solved by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 42-57, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
    2. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    3. Huisman, D. & Jans, R.F. & Peeters, M. & Wagelmans, A.P.M., 2003. "Combining Column Generation and Lagrangian Relaxation," ERIM Report Series Research in Management ERS-2003-092-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Jahn, Olaf & Möhring, Rolf & Schulz, Andreas & Stier Moses, Nicolás, 2004. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Working papers 4394-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    5. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    6. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    7. Gamvros, Ioannis & Raghavan, S., 2012. "Multi-period traffic routing in satellite networks," European Journal of Operational Research, Elsevier, vol. 219(3), pages 738-750.
    8. Pillac, Victor & Van Hentenryck, Pascal & Even, Caroline, 2016. "A conflict-based path-generation heuristic for evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 136-150.
    9. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    10. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    11. Bita Tadayon & J. Cole Smith, 2014. "Algorithms for an Integer Multicommodity Network Flow Problem with Node Reliability Considerations," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 506-532, May.
    12. Yu Zhou & Leishan Zhou & Yun Wang & Xiaomeng Li & Zhuo Yang, 2017. "A practical model for the train-set utilization: The case of Beijing-Tianjin passenger dedicated line in China," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-24, May.
    13. Masri, H. & Krichen, S. & Guitouni, A., 2015. "A multi-start variable neighborhood search for solving the single path multicommodity flow problem," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 132-142.
    14. Chi Xie & Xing Wu & Stephen Boyles, 2019. "Traffic equilibrium with a continuously distributed bound on travel weights: the rise of range anxiety and mental account," Annals of Operations Research, Springer, vol. 273(1), pages 279-310, February.
    15. Zhu, Xiaoyan & Wilhelm, Wilbert E., 2007. "Three-stage approaches for optimizing some variations of the resource constrained shortest-path sub-problem in a column generation context," European Journal of Operational Research, Elsevier, vol. 183(2), pages 564-577, December.
    16. Trivella, Alessio & Corman, Francesco & Koza, David F. & Pisinger, David, 2021. "The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    17. Peeters, M. & Kroon, L.G., 2003. "Circulation of Railway Rolling Stock: A Branch-and-Price Approach," ERIM Report Series Research in Management ERS-2003-055-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Esteban Inga & Roberto Hincapié & Sandra Céspedes, 2019. "Capacitated Multicommodity Flow Problem for Heterogeneous Smart Electricity Metering Communications Using Column Generation," Energies, MDPI, vol. 13(1), pages 1-21, December.
    19. Akyüz, M. Hakan & Dekker, Rommert & Sharif Azadeh, Shadi, 2023. "Partial and complete replanning of an intermodal logistic system under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aeg:wpaper:2010-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antonietta Angelica Zucconi (email available below). General contact details of provider: https://edirc.repec.org/data/dirosit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.