[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332416.html
   My bibliography  Save this paper

Trade-offs in water policy: System-wide implications of changing water availability and agricultural productivity in the Mediterranean economies by 2050

Author

Listed:
  • Roson, Roberto
  • Sartori, Martina
Abstract
We evaluate the structural consequences of water availability scenarios in the Mediterranean, following a bottom-up methodology. This includes an assessment of future water availability and a general equilibrium analysis of changes in agricultural productivity. Lower productivity in agriculture, induced by reduced water availability, generates negative consequences in terms of real income and welfare. The magnitude of the loss depends on the amount of the productivity shock, but also on the share of agricultural activities in the economy and on the stringency of the environmental regulation. Our results suggest that countries in Middle East and North Africa could respond to increasing water scarcity by accepting, to some extent, lower environmental quality (deterioration of aquatic environments). Furthermore, improvements in water efficiency appear to curb the economic impact of water scarcity quite significantly, especially for northern Mediterranean countries.

Suggested Citation

  • Roson, Roberto & Sartori, Martina, 2013. "Trade-offs in water policy: System-wide implications of changing water availability and agricultural productivity in the Mediterranean economies by 2050," Conference papers 332416, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332416
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332416/files/6164.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Reimer, Jeffrey J., 2012. "On the economics of virtual water trade," Ecological Economics, Elsevier, vol. 75(C), pages 135-139.
    2. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    3. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    4. Roberto Roson & Dominique Van der Mensbrugghe, 2012. "Climate change and economic growth: impacts and interactions," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 4(3), pages 270-285.
    5. Allouche, Jeremy, 2011. "The sustainability and resilience of global water and food systems: Political analysis of the interplay between security, resource scarcity, political systems and global trade," Food Policy, Elsevier, vol. 36(Supplemen), pages 3-8, January.
    6. Roberto Roson & Dominique Van der Mensbrugghe, 2012. "Climate change and economic growth: impacts and interactions," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 4(3), pages 270-285.
    7. Allouche, Jeremy, 2011. "The sustainability and resilience of global water and food systems: Political analysis of the interplay between security, resource scarcity, political systems and global trade," Food Policy, Elsevier, vol. 36(S1), pages 3-8.
    8. Novo, P. & Garrido, A. & Varela-Ortega, C., 2009. "Are virtual water "flows" in Spanish grain trade consistent with relative water scarcity?," Ecological Economics, Elsevier, vol. 68(5), pages 1454-1464, March.
    9. N/A, 2002. "Documents," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 3(2), pages 336-337, September.
    10. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    11. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    12. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    13. N/A, 2002. "Documents," South Asian Survey, , vol. 9(2), pages 287-304, September.
    14. Khan, Shahbaz & Hanjra, Munir A., 2009. "Footprints of water and energy inputs in food production - Global perspectives," Food Policy, Elsevier, vol. 34(2), pages 130-140, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    2. Funk, Bryana & Amer, Saud A. & Ward, Frank A., 2023. "Sustainable aquifer management for food security," Agricultural Water Management, Elsevier, vol. 281(C).
    3. Moon, Wanki, 2011. "Is agriculture compatible with free trade?," Ecological Economics, Elsevier, vol. 71(C), pages 13-24.
    4. Roberto Roson & Richard Damania, the World Bank, Washington D.C., 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity," EcoMod2016 9167, EcoMod.
    5. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    6. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Kym Anderson & Anna Strutt, 2014. "Emerging economies, productivity growth and trade with resource-rich economies by 2030," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 590-606, October.
    8. Ozturk, Ilhan, 2015. "Sustainability in the food-energy-water nexus: Evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries," Energy, Elsevier, vol. 93(P1), pages 999-1010.
    9. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    10. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    11. Tariq Ali & Bo Zhou & David Cleary & Wei Xie, 2022. "The Impact of Climate Change on China and Brazil’s Soybean Trade," Land, MDPI, vol. 11(12), pages 1-16, December.
    12. Kym Anderson, 2016. "Agricultural Trade, Policy Reforms, and Global Food Security," Palgrave Studies in Agricultural Economics and Food Policy, Palgrave Macmillan, number 978-1-137-46925-0, November.
    13. Kym Anderson & Anna Strutt, 2015. "Implications for Indonesia of Asia's Rise in the Global Economy," Bulletin of Indonesian Economic Studies, Taylor & Francis Journals, vol. 51(1), pages 69-94, April.
    14. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 09916, Department of Economics, University of Sussex Business School.
    15. Roberto Roson & Dominique van der Mensbrugghe, 2017. "Assessing Long Run Structural Change in Multi-Sector General Equilibrium Models," EcoMod2017 10257, EcoMod.
    16. Ruchie Pathak & Nicholas R. Magliocca, 2022. "Assessing the Representativeness of Irrigation Adoption Studies: A Meta-Study of Global Research," Agriculture, MDPI, vol. 12(12), pages 1-31, December.
    17. Soheila Zareie & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2021. "A state-of-the-art review of water diplomacy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2337-2357, February.
    18. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 9916, Department of Economics, University of Sussex.
    19. Kym Anderson & Anna Strutt, 2014. "Growth in Densely Populated Asia: Implications for Primary Product Exporters," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(1), pages 112-126, January.
    20. Gabriele Standardi, 2023. "Exploring market-driven adaptation to climate change in a general equilibrium global trade model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-29, February.

    More about this item

    Keywords

    Resource /Energy Economics and Policy; Productivity Analysis;

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.