[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ags/eaa120/109320.html
   My bibliography  Save this paper

Mitigation options and policies in agricultural sector: a theoretical model and application

Author

Listed:
  • Ervola, Asta
  • Lankoski, Jussi E.
  • Ollikainen, Markku
Abstract
Agriculture’s impact on climate change is unambiguous although its role is multifaceted as it is a source of greenhouse gases but also a sink. It’s feasibility to mitigate climate change has raised interest, but thorough studies about the net benefits of the mitigation practices are needed. The aim of this paper is to analyse the social net benefits of barley cultivation on three different soil types in Finland (clay, silt and organic) by using an integrated economic and ecological model. We ask whether it would be privately or socially profitable to allocate some of barley cultivation permanently for alternative land uses or cultivation systems, when production costs, GHG emissions and surface water quality impacts are taken into account. We compare the profitability of barley cultivation under conventional tillage (mouldboard ploughing) to conservation tillage (no-till), green and bare fallow and afforestation. We develop a theoretical framework for climate policies in agriculture. A comparison of the socially and privately optimal input use and land allocation choices allows us to derive optimal carbon tax and payments for climate and water quality friendly tillage practices. The empirical application of the model uses Finnish data to define the social welfare created by alternative soil type and tillage combinations and optimal policy instruments. GHG emissions are assessed on the basis of the whole life cycle of the production comprising also CO2 emission from soils. To assess the net social benefits related to alternative land use options monetary environmental valuation estimates are used in order to find the socially most profitable land allocation as regards soil type.

Suggested Citation

  • Ervola, Asta & Lankoski, Jussi E. & Ollikainen, Markku, 2010. "Mitigation options and policies in agricultural sector: a theoretical model and application," 120th Seminar, September 2-4, 2010, Chania, Crete 109320, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa120:109320
    DOI: 10.22004/ag.econ.109320
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/109320/files/Ervola_Lankoski_Ollikainen.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.109320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Feng, Hongli & Zhao, Jinhua & Kling, Catherine L., 2002. "Time Path and Implementation of Carbon Sequestration (The)," Staff General Research Papers Archive 5068, Iowa State University, Department of Economics.
    2. Jussi Lankoski & Markku Ollikainen & Pekka Uusitalo, 2006. "No-till technology: benefits to farmers and the environment? Theoretical analysis and application to Finnish agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 33(2), pages 193-221, June.
    3. Jinhua Zhao & Catherine L. Kling & Lyubov A. Kurkalova, 2003. "Alternative Green Payment Policies under Heterogeneity When Multiple Benefits Matter," Center for Agricultural and Rural Development (CARD) Publications 03-wp341, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    4. Antle, John M. & Capalbo, Susan Marie & Mooney, Sian & Elliott, Edward T. & Paustian, Keith H., 2001. "Economic Analysis Of Agricultural Soil Carbon Sequestration: An Integrated Assessment Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-24, December.
    5. Weersink, Alfons & Joseph, Stanley & Kay, Beverly D. & Turvey, Calum G., 2003. "An Economic Analysis of the Potential Influence of Carbon Credits on Farm Management Practices," CAFRI: Current Agriculture, Food and Resource Issues, Canadian Agricultural Economics Society, issue 4, pages 1-11, September.
    6. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Jin & Li, Jun & Wu, Yanrui & Wang, Shanyong & Zhao, Dingtao, 2016. "The effects of allowance price on energy demand under a personal carbon trading scheme," Applied Energy, Elsevier, vol. 170(C), pages 242-249.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Cara, Stephane & Rozakis, Stelios, 2004. "Carbon sequestration through the planting of multi-annual energy crops: A dynamic and spatial assessment," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(1), pages 1-17, January.
    2. Hediger, Werner, 2009. "The non-permanence of optimal soil carbon sequestration," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51057, Agricultural Economics Society.
    3. Ervola, Asta & Lankoski, Jussi E. & Ollikainen, Markku, 2011. "Agriculture and Climate Change: Socially Optimal Production and Land Use," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114339, European Association of Agricultural Economists.
    4. Heng‐Chi Lee & Bruce A. McCarl & Dhazn Gillig, 2005. "The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(4), pages 343-357, December.
    5. de Cara, Stephane & Houze, Martin & Jayet, Pierre-Alain, 2004. "Greenhouse gas emissions from agriculture in the EU: A spatial assessment of sources and abatement costs," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58401, Australian Agricultural and Resource Economics Society.
    6. Jimena González-Ramírez & Catherine L. Kling & Adriana Valcu, 2012. "An Overview of Carbon Offsets from Agriculture," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 145-160, August.
    7. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    8. Sharma, Bijay P. & Khanna, Madhu & Miao, Ruiqing, 2022. "Designing Efficient Payments to Incentivize GHG Mitigation Using Energy Crops," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322361, Agricultural and Applied Economics Association.
    9. Hartmann, Michael, 2005. "Agriculture's Contribution to Swiss Climate Policy: Results of an Economic Analysis," Agrarwirtschaft und Agrarsoziologie\ Economie et Sociologie Rurales, Swiss Society for Agricultural Economics and Rural Sociology, vol. 2005(1), pages 1-16.
    10. Feng, Hongli & Kurkalova, Lyubov A. & Kling, Catherine L. & Gassman, Philip W., 2005. "Transfers and Environmental Co-Benefits of Carbon Sequestration in Agricultural Soils: Retiring Agricultural Land in the Upper Mississippi River Basin," Staff General Research Papers Archive 12439, Iowa State University, Department of Economics.
    11. Kragt, Marit E. & Pannell, David J. & Robertson, Michael J. & Thamo, Tas, 2012. "Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia," Agricultural Systems, Elsevier, vol. 112(C), pages 27-37.
    12. Caparros, Alejandro & Cerda, Emilio & Ovando, P. & Campos, Pablo, 2007. "Carbon Sequestration with Reforestations and Biodiversity-Scenic Values," Climate Change Modelling and Policy Working Papers 9323, Fondazione Eni Enrico Mattei (FEEM).
    13. Soh, Moonwon & Cho, Seong-Hoon & Yu, Edward & Boyer, Christopher & English, Burton, 2018. "Targeting Payments for Ecosystem Services Given Ecological and Economic Objectives," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266502, Southern Agricultural Economics Association.
    14. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    15. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    16. Jianhong Mu & Anne Wein & Bruce McCarl, 2015. "Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1041-1054, October.
    17. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    18. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    19. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    20. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa120:109320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.