[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ags/eaa110/49889.html
   My bibliography  Save this paper

The LP Model to Optimize the Biofuel Supply Chain

Author

Listed:
  • Rosa, Franco
Abstract
The heavy dependence of the EU countries from the imported oil, a growing economic vulnerability caused by wider and almost unforeseeable price changes of the crude oil commodity, the global warming are some of the reasons that have induced the policy makers to incentive the production of domestic biofuels derived from agricultural biomasses. This paper analyzes the supply chain model of biofuel production by focussing the economic and environment potential benefits that production and use of these biofuels might have for the primary sector and the society. The suggestions are that biofuels can be a promising renewable sources of energy; the positive perceived advantages are: less dependence on turbulent exporting countries, higher security from diversified domestic sources of energy, some environmental benefits derived from the capture of GHG emission. This paper is structured as follows: paragraphs 1 and 2 describe the scenario and the theoretical background; paragraphs 3 and 4 illustrates the problem specification and the algebraic formulation of the LP model addressed to test the sustainability of the supply chain named Biorefinery under the three assumptions hypothesized at the beginning, paragraph 5 reports some of the experimental results with comments and paragraphs 6 describes the main conclusions. This model of cogeneration is more efficient in terms of energy compared to other biofuel chains, and is more socially acceptable because fuel and food productions are complementary each others. The partial energy balance of the fuel and biogas are positive while the livestock energy balance is heavily energy consuming, the total energy balance is neutral.

Suggested Citation

  • Rosa, Franco, 2008. "The LP Model to Optimize the Biofuel Supply Chain," 110th Seminar, February 18-22, 2008, Innsbruck-Igls, Austria 49889, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaa110:49889
    DOI: 10.22004/ag.econ.49889
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/49889/files/Rosa.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.49889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Delucchi, Mark, 2004. "Conceptual and Methodological Issues in Lifecycle Analyses of Transportation Fuels," Institute of Transportation Studies, Working Paper Series qt8n77n6z7, Institute of Transportation Studies, UC Davis.
    2. Bruce A. McCarl & Uwe A. Schneider, 2000. "U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 22(1), pages 134-159.
    3. Kadam, Kiran L., 2002. "Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India," Energy Policy, Elsevier, vol. 30(5), pages 371-384, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iliopoulos, Constantine & Rozakis, Stelios, 2010. "Environmental cost-effectiveness of bio diesel production in Greece: Current policies and alternative scenarios," Energy Policy, Elsevier, vol. 38(2), pages 1067-1078, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutsey, Nicholas P., 2008. "Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors," Institute of Transportation Studies, Working Paper Series qt5rd41433, Institute of Transportation Studies, UC Davis.
    2. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    3. Singh, S.P. & Asthana, R.K. & Singh, A.P., 2007. "Prospects of sugarcane milling waste utilization for hydrogen production in India," Energy Policy, Elsevier, vol. 35(8), pages 4164-4168, August.
    4. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    5. Rajagopal, Deepak & Zilberman, David, 2008. "Environmental Lifecycle Assessment for Policy Decision-Making and Analysis," Lifecycle Carbon Footprint of Biofuels Workshop, January 29, 2008, Miami Beach, Florida 49090, Farm Foundation.
    6. Silveira, Semida & Khatiwada, Dilip, 2010. "Ethanol production and fuel substitution in Nepal--Opportunity to promote sustainable development and climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1644-1652, August.
    7. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    8. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    9. Wang, Weiwei & Khanna, Madhu & Dwivedi, Puneet, 2013. "Optimal Mix of Feedstock for Biofuels: Implications for Land Use and GHG Emissions," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150736, Agricultural and Applied Economics Association.
    10. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. repec:bla:afrdev:v:29:y:2017:i:s2:p:163-178 is not listed on IDEAS
    12. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    13. Min Su & Rui Jiang & Rongrong Li, 2017. "Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    14. Daniel M. Kammen & Alexander E. Farrell & Richard J. Plevin & Andrew D. Jones & Mark A. Delucchi & Gregory F. Nemet, 2007. "Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis," OECD/ITF Joint Transport Research Centre Discussion Papers 2007/2, OECD Publishing.
    15. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    16. Feng, Hongli & Rubin, Ofir & Babcock, Bruce A., 2008. "Greenhouse Gas Impacts of Ethanol from Iowa Corn: Life Cycle Analysis Versus System-Wide Accounting," Staff General Research Papers Archive 12871, Iowa State University, Department of Economics.
    17. Turner, Brian T. & Plevin, Richard J. & O'Hare, Michael & Farrell, Alexander E., 2007. "Creating Markets for Green Biofuels: Measuring and improving environmental performance," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0mm0m9xm, Institute of Transportation Studies, UC Berkeley.
    18. D'Agosto, Márcio de Almeida & Ribeiro, Suzana Kahn, 2009. "Assessing total and renewable energy in Brazilian automotive fuels. A life cycle inventory (LCI) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1326-1337, August.
    19. Heng-Chi Lee & Bruce McCarl & Uwe Schneider & Chi-Chung Chen, 2007. "Leakage and Comparative Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 471-494, May.
    20. Chin-Hsien Yu & Bruce A. McCarl, 2018. "The Water Implications of Greenhouse Gas Mitigation: Effects on Land Use, Land Use Change, and Forestry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    21. Meyer-Aurich, A. & Gandorfer, M. & Gerlund, G. & Kainz, M., 2009. "Ökonomische Analyse reduzierter Bodenbearbeitung in Abhängigkeit von der Stickstoffdüngung unter besonderer Berücksichtigung des Produktionsrisikos," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 44, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaa110:49889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.