[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ags/aare11/100575.html
   My bibliography  Save this paper

Easy winnings? The economics of carbon sequestration in agricultural soils

Author

Listed:
  • Kragt, Marit Ellen
  • Pannell, David J.
  • Robertson, Michael J.
Abstract
The Australian government has identified soil carbon sequestration on agricultural lands as a potential strategy to offset greenhouse gas emissions. Industry and government claim providing positive incentives for farmers to change their land management will be cost can result in significant carbon sequestration in agricultural soils. There is, however, little information about the costs or benefits of agricultural soil carbon sequestration to test these claims. The objective of this study is to assess the costs of alternative land-use and land practises that will increase soil carbon sequestration, for a case study of the WA Wheat belt. The analysis integrates biophysical modelling of carbon sequestration with whole-farm economic modelling, to evaluate the cost-effectiveness of alternative carbon storage practices. Preliminary results suggest that, even under low commodity price scenarios, the opportunit sequestering carbon are considerable. We discuss the implications of our findings for policy development.

Suggested Citation

  • Kragt, Marit Ellen & Pannell, David J. & Robertson, Michael J., 2011. "Easy winnings? The economics of carbon sequestration in agricultural soils," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100575, Australian Agricultural and Resource Economics Society.
  • Handle: RePEc:ags:aare11:100575
    DOI: 10.22004/ag.econ.100575
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Monjardino, Marta & Revell, Dean & Pannell, David J., 2010. "The potential contribution of forage shrubs to economic returns and environmental management in Australian dryland agricultural systems," Agricultural Systems, Elsevier, vol. 103(4), pages 187-197, May.
    2. Lyubov Kurkalova & Catherine Kling & Jinhua Zhao, 2006. "Green Subsidies in Agriculture: Estimating the Adoption Costs of Conservation Tillage from Observed Behavior," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 54(2), pages 247-267, June.
    3. David J. Pannell, 2006. "Flat Earth Economics: The Far-reaching Consequences of Flat Payoff Functions in Economic Decision Making," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(4), pages 553-566.
    4. Dustin L. Pendell & Jeffery R. Williams & Scott B. Boyles & Charles W. Rice & Richard G. Nelson, 2007. "Soil Carbon Sequestration Strategies with Alternative Tillage and Nitrogen Sources under Risk," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 247-268.
    5. Ludwig, Fulco & Asseng, Senthold, 2006. "Climate change impacts on wheat production in a Mediterranean environment in Western Australia," Agricultural Systems, Elsevier, vol. 90(1-3), pages 159-179, October.
    6. Douglas J. Miller, 1999. "An Econometric Analysis of the Costs of Sequestering Carbon in Forests," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(4), pages 812-824.
    7. Flugge, Felicity & Schilizzi, Steven, 2005. "Greenhouse gas abatement policies and the value of carbon sinks: Do grazing and cropping systems have different destinies?," Ecological Economics, Elsevier, vol. 55(4), pages 584-598, December.
    8. Bathgate, Andrew & Pannell, David J., 2002. "Economics of deep-rooted perennials in western Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 117-132, February.
    9. Gibson, Lauren & Kingwell, Ross & Doole, Graeme, 2008. "The role and value of eastern star clover in managing herbicide-resistant crop weeds: A whole-farm analysis," Agricultural Systems, Elsevier, vol. 98(3), pages 199-207, October.
    10. Kingwell, Ross S., 2009. "The Carbon Challenge for Mixed Enterprise Farms," 2009 Conference, August 27-28, 2009, Nelson, New Zealand 97169, New Zealand Agricultural and Resource Economics Society.
    11. Andrew J. Plantinga & JunJie Wu, 2003. "Co-Benefits from Carbon Sequestration in Forests: Evaluating Reductions in Agricultural Externalities from an Afforestation Policy in Wisconsin," Land Economics, University of Wisconsin Press, vol. 79(1), pages 74-85.
    12. Probert, M. E. & Dimes, J. P. & Keating, B. A. & Dalal, R. C. & Strong, W. M., 1998. "APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems," Agricultural Systems, Elsevier, vol. 56(1), pages 1-28, January.
    13. Diagana, Bocar & Antle, John & Stoorvogel, Jetse & Gray, Kara, 2007. "Economic potential for soil carbon sequestration in the Nioro region of Senegal's Peanut Basin," Agricultural Systems, Elsevier, vol. 94(1), pages 26-37, April.
    14. Manley, James G. & van Kooten, G. Cornelis & Moeltner, Klaus & Johnson, Dale W., 2003. "Creating Carbon Offsets in Agriculture through No-Till Cultivation: A Meta-Analysis of Costs and Carbon Benefits," Working Papers 36994, University of Victoria, Resource Economics and Policy.
    15. Antle, John M. & Capalbo, Susan Marie & Mooney, Sian & Elliott, Edward T. & Paustian, Keith H., 2001. "Economic Analysis Of Agricultural Soil Carbon Sequestration: An Integrated Assessment Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-24, December.
    16. Tschakert, Petra, 2004. "The costs of soil carbon sequestration: an economic analysis for small-scale farming systems in Senegal," Agricultural Systems, Elsevier, vol. 81(3), pages 227-253, September.
    17. O'Connell, Michael & Young, John & Kingwell, Ross, 2006. "The economic value of saltland pastures in a mixed farming system in Western Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 371-389, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kragt, Marit E. & Pannell, David J. & Robertson, Michael J. & Thamo, Tas, 2012. "Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia," Agricultural Systems, Elsevier, vol. 112(C), pages 27-37.
    2. Bathgate, A. & Revell, C. & Kingwell, R., 2009. "Identifying the value of pasture improvement using wholefarm modelling," Agricultural Systems, Elsevier, vol. 102(1-3), pages 48-57, October.
    3. Kingwell, Ross S., 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-23.
    4. Tas Thamo & Ross S. Kingwell & David J. Pannell, 2013. "Measurement of greenhouse gas emissions from agriculture: economic implications for policy and agricultural producers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 234-252, April.
    5. Rose, Gus & Kingwell, Ross S., 2009. "Seasonal labour is the most profitable use of labour in broadacre crop dominant farms," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47947, Australian Agricultural and Resource Economics Society.
    6. Kingwell, Ross & Fuchsbichler, Amy, 2011. "The whole-farm benefits of controlled traffic farming: An Australian appraisal," Agricultural Systems, Elsevier, vol. 104(7), pages 513-521, September.
    7. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    8. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    9. Finlayson, John & Real, Daniel & Nordblom, Tom & Revell, Clinton & Ewing, Mike & Kingwell, Ross, 2012. "Farm level assessments of a novel drought tolerant forage: Tedera (Bituminaria bituminosa C.H. Stirt var. albomarginata)," Agricultural Systems, Elsevier, vol. 112(C), pages 38-47.
    10. Mireille Chiroleu-Assouline & Sébastien Roussel, 2010. "Contract Design to Sequester Carbon in Agricultural Soils," Documents de travail du Centre d'Economie de la Sorbonne 10060, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Tas Thamo & David J. Pannell & Marit E. Kragt & Michael J. Robertson & Maksym Polyakov, 2017. "Dynamics and the economics of carbon sequestration: common oversights and their implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1095-1111, October.
    12. Mireille Chiroleu-Assouline & Sebastien Roussel, 2014. "Payments for Carbon Sequestration in Agricultural Soils: Incentives for the Future and Rewards for the Past," CEEES Paper Series CE3S-01/14, European University at St. Petersburg, Department of Economics.
    13. Kingwell, Ross S. & Metcalf, Tess, 2009. "Low Emission Farming Systems: A whole-farm analysis of the potential impacts of greenhouse policy," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 48162, Australian Agricultural and Resource Economics Society.
    14. Galati, Antonino & Crescimanno, Maria & Gristina, Luciano & Keesstra, Saskia & Novara, Agata, 2016. "Actual provision as an alternative criterion to improve the efficiency of payments for ecosystem services for C sequestration in semiarid vineyards," Agricultural Systems, Elsevier, vol. 144(C), pages 58-64.
    15. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    16. Tang, Kai & Hailu, Atakelty & Kragt, Marit E. & Ma, Chunbo, 2018. "The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives," Agricultural Systems, Elsevier, vol. 160(C), pages 11-20.
    17. de Cara, Stephane & Rozakis, Stelios, 2004. "Carbon sequestration through the planting of multi-annual energy crops: A dynamic and spatial assessment," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(1), pages 1-17, January.
    18. Tang, Kai & He, Chuantian & Ma, Chunbo & Wang, Dong, 2019. "Does carbon farming provide a cost-effective option to mitigate GHG emissions? Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.
    19. Feng, Hongli & Kurkalova, Lyubov A. & Kling, Catherine L. & Gassman, Philip W., 2006. "Environmental conservation in agriculture: Land retirement vs. changing practices on working land," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 600-614, September.
    20. Fulton, Murray E. & Cule, Monika & Weersink, Alfons, 2005. "Greenhouse Gas Policy and Canadian Agriculture," CAFRI: Current Agriculture, Food and Resource Issues, Canadian Agricultural Economics Society, issue 6, pages 1-11, January.

    More about this item

    Keywords

    Agribusiness;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aare11:100575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.