[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc14/100615.html
   My bibliography  Save this paper

Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion

Author

Listed:
  • Brandtner, Mario
  • Kürsten, Wolfgang
Abstract
We analyze spectral risk measures with respect to comparative risk aversion following Arrow (1965) and Pratt (1964) on the one hand, and Ross (1981) on the other hand. The implications for two standard financial decision problems, namely the willingness to pay for insurance and portfolio selection, are studied. Within the framework of Arrow and Pratt, we show that the widely-applied spectral Arrow-Pratt-measure is not a consistent measure of Arrow-Pratt-risk aversion. A decision maker with a greater spectral Arrow-Pratt-measure may only be willing to pay less for insurance or to invest more in the risky asset than a decision maker with a smaller spectral Arrow-Pratt-measure. We further show how a proper measure of Arrow-Pratt-risk aversion should look like instead. Within the framework of Ross, we show that the popular subclasses of Conditional Value-at-Risk, and exponential and power spectral risk measures cannot be completely ordered with respect to Ross-risk aversion. As a consequence, these subclasses also exhibit counter-intuitive comparative static results. In the insurance problem, the willingness to pay for insurance may be decreasing with increasing risk parameter. In the portfolio selection problem, the investment in the risky asset may be increasing with increasing risk parameter. These shortcomings have to be considered before spectral risk measures can be applied for the purpose of optimal decision making and regulatory issues.

Suggested Citation

  • Brandtner, Mario & Kürsten, Wolfgang, 2014. "Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100615, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc14:100615
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/100615/1/VfS_2014_pid_752.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Roell, Ailsa A, 1987. "Risk Aversion in Quiggin and Yaari's Rank-Order Model of Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 97(388a), pages 143-159, Supplemen.
    3. Eeckhoudt, Louis & Gollier, Christian & Schlesinger, Harris, 1991. "Increases in risk and deductible insurance," Journal of Economic Theory, Elsevier, vol. 55(2), pages 435-440, December.
    4. Kevin Dowd & John Cotter & Ghulam Sorwar, 2008. "Spectral Risk Measures: Properties and Limitations," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 61-75, August.
    5. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    6. Liqun Liu & Jack Meyer, 2013. "Normalized measures of concavity and Ross’s strongly more risk averse order," Journal of Risk and Uncertainty, Springer, vol. 47(2), pages 185-198, October.
    7. Acerbi Carlo & Simonetti Prospero, 2002. "Portfolio Optimization with Spectral Measures of Risk," Papers cond-mat/0203607, arXiv.org.
    8. Massimiliano Barbi & Silvia Romagnoli, 2014. "A Copula‐Based Quantile Risk Measure Approach to Estimate the Optimal Hedge Ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(7), pages 658-675, July.
    9. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    10. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    11. Kevin Dowd & David Blake, 2006. "After VaR: The Theory, Estimation, and Insurance Applications of Quantile‐Based Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 193-229, June.
    12. Werner Jammernegg & Peter Kischka, 2007. "Risk-averse and risk-taking newsvendors: a conditional expected value approach," Review of Managerial Science, Springer, vol. 1(1), pages 93-110, April.
    13. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    14. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    15. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    16. Johannes Leitner, 2005. "A Short Note On Second‐Order Stochastic Dominance Preserving Coherent Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 649-651, October.
    17. Alexandre Adam & Mohamed Houkari & Jean-Paul Laurent, 2008. "Spectral risk measures and portfolio selection," Post-Print hal-03676385, HAL.
    18. Ross, Stephen A, 1981. "Some Stronger Measures of Risk Aversion in the Small and the Large with Applications," Econometrica, Econometric Society, vol. 49(3), pages 621-638, May.
    19. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    20. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    21. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    22. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    23. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Günter Bamberg & Michael Krapp, 2016. "Is time consistency compatible with risk aversion?," Review of Managerial Science, Springer, vol. 10(2), pages 195-211, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    2. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    3. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    4. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    5. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2020. "Beyond expected utility: Subjective risk aversion and optimal portfolio choice under convex shortfall risk measures," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1114-1126.
    6. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    7. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    8. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    9. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Solvency II, regulatory capital, and optimal reinsurance: How good are Conditional Value-at-Risk and spectral risk measures?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 156-167.
    10. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    11. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    12. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    13. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    14. Matyska, Branka, 2021. "Salience, systemic risk and spectral risk measures as capital requirements," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    15. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    16. Ma, Chenghu & Wong, Wing-Keung, 2010. "Stochastic dominance and risk measure: A decision-theoretic foundation for VaR and C-VaR," European Journal of Operational Research, Elsevier, vol. 207(2), pages 927-935, December.
    17. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    18. Adam, Lukáš & Branda, Martin, 2021. "Risk-aversion in data envelopment analysis models with diversification," Omega, Elsevier, vol. 102(C).
    19. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    20. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc14:100615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.