(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199560.html
   My bibliography  Save this paper

Estimation of Derivatives for Additive Separable Models

Author

Listed:
  • Severance-Lossin, E.
  • Sperlich, S.
Abstract
Additive regression models have a long history in nonparametric regression. It is well known that these models can be estimated at the one dimensional rate. Until recently, however, these models have been estimated by a backfitting procedure. Although the procedure converges quickly, its iterative nature makes analyzing its statistical properties difficult. Furthermore it is unclear how to estimate derivatives with this approach since it does not give a closed form for the estimator. Recently, an integration approach has been studied that allows for the derivation of a closed form for the estimator. This paper extends this approach to the simultaneous estimation of both the function and its derivatives by combining the integration procedure with a local polynomial approach. Finally the merits of this procedure with respect to the estimation of a production function subject to separability conditions are discussed. The procedure is applied to livestock production data from Wisconsin. It is shown that there is some evidence of increasing return to scale for larger farms.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Severance-Lossin, E. & Sperlich, S., 1995. "Estimation of Derivatives for Additive Separable Models," SFB 373 Discussion Papers 1995,60, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199560
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Härdle, Wolfgang & Linton, O., 1995. "Nonparametric Regression," SFB 373 Discussion Papers 1995,29, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    3. Paul J. Driscoll & Richard Boisvert, 1991. "Dual Second- and Third-Order Translog Models of Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(4), pages 1146-1160.
    4. Hardle, W. & Marron, J., 1989. "Bootstrap Simultaneous Error Bars For Nonparametric Regression," LIDAM Discussion Papers CORE 1989023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Paul Driscoll & Jeff Alwang & Anya McGuirk, 1992. "Testing Hypotheses of Functional Structure: Some Rules for Determining Flexibility of Restricted Production Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(1), pages 100-108.
    6. Blackorby, Charles & Primont, Daniel & Russell, R. Robert, 1977. "On testing separability restrictions with flexible functional forms," Journal of Econometrics, Elsevier, vol. 5(2), pages 195-209, March.
    7. Guilkey, David K & Lovell, C A Knox & Sickles, Robin C, 1983. "A Comparison of the Performance of Three Flexible Functional Forms," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 591-616, October.
    8. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    9. Härdle, Wolfgang & Tsybakov, A. B., 1994. "Additive Nonparametric Regression on Principal Components," SFB 373 Discussion Papers 1994,39, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    2. Stefan Profit & Stefan Sperlich, 2004. "Non-uniformity of job-matching in a transition economy - A nonparametric analysis for the Czech Republic," Applied Economics, Taylor & Francis Journals, vol. 36(7), pages 695-714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Politis, Dimitris N, 2010. "Model-free Model-fitting and Predictive Distributions," University of California at San Diego, Economics Working Paper Series qt67j6s174, Department of Economics, UC San Diego.
    2. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    3. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    4. Härdle, Wolfgang & Huet, Sylvie & Mammen, Enno & Sperlich, Stefan, 1998. "Semiparametric additive indices for binary response and generalized additive models," SFB 373 Discussion Papers 1998,95, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Herwartz, Helmut & Reimers, Hans-Eggert, 2006. "Modelling the Fisher hypothesis: World wide evidence," Economics Working Papers 2006-04, Christian-Albrechts-University of Kiel, Department of Economics.
    6. Hjalmarsson, Erik, 2003. "Does the Black-Scholes formula work for electricity markets? A nonparametric approach," Working Papers in Economics 101, University of Gothenburg, Department of Economics.
    7. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    8. Geng, Xin & Janssens, Wendy & Kramer, Berber, 2018. "Liquid milk: Cash Constraints and Recurring Savings among Dairy Farmers in Kenya," 2018 Annual Meeting, August 5-7, Washington, D.C. 273823, Agricultural and Applied Economics Association.
    9. BERTINELLI, Luisito & STROBL, Eric, 2003. "Urbanization, urban concentration and economic growth in developing countries," LIDAM Discussion Papers CORE 2003076, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    11. Zhijie Xiao & Oliver Linton & Raymond J. Carroll & E. Mammen, 2002. "More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors," Cowles Foundation Discussion Papers 1375, Cowles Foundation for Research in Economics, Yale University.
    12. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    13. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    14. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    15. Emmanuel Saez, 2010. "Do Taxpayers Bunch at Kink Points?," American Economic Journal: Economic Policy, American Economic Association, vol. 2(3), pages 180-212, August.
    16. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    17. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.
    18. Michael LaCour-Little & Michael Marschoun & Clark L. Maxam, 2002. "Improving Parametric Mortgage Prepayment Models with Non-parametric Kernel Regression," Journal of Real Estate Research, American Real Estate Society, vol. 24(3), pages 299-328.
    19. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    20. McMillen, Daniel P., 2001. "Nonparametric Employment Subcenter Identification," Journal of Urban Economics, Elsevier, vol. 50(3), pages 448-473, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.