[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkpb/43.html
   My bibliography  Save this paper

How will Germany's CCS policy affect the development of a European CO2 transport infrastructure?

Author

Listed:
  • Bertram, Christine
  • Heitmann, Nadine
  • Narita, Daiju
  • Schwedeler, Markus
Abstract
CO2 storage opportunities and the location of coal-fired power plants are located far apart throughout Europe, suggesting the need for a region-wide CO2 pipeline network or at least a considerable number of cross-border transport pipelines. Regionally coherent policy would be needed to embed a CCS infrastructure into an evolving European electricity system. However, the current EU's CCS Directive leaves the decision to allow carbon storage on their territory to individual MSs and makes no provision for limiting local bans on CCS. Such EU policy should be reconsidered, as it could distort optimal pipeline infrastructure development and make pipeline construction more expensive. Germany, for example, is the largest emitter of CO2 in Europe, has the second largest storage capacities, and is located in the middle of Europe. A German ban on onshore storage of CO2 could not only unnecessarily increase the size of a transport network in Europe, but also the costs of building CCS infrastructure. It is worth stressing that the issue of building CCS infrastructure is a policy question that requires deliberation starting today, even if building most of the projects were likely to commence at least a decade later. Although CCS is not yet a fully established technology, steps should be taken now to set up a policy framework given the long time horizon that investment decisions in CCS infrastructure and power generation facilities would require. Moreover, the current uncertainty about the future of CCS also discourages private investment in CCS research and could thus hinder an even more efficient and effective use of this technology. As the present situation indicates, the implementation of CCS runs the risk of being deployed only in isolated cases, which would influence future energy mixes and might hamper the realization of stringent climate goals. Even if the use of renewable sources to produce energy increases in the future, coal will likely remain an important energy source for the next 20 years, particularly in Germany where nuclear power is to be phased out. In this context, CCS is a powerful option to reduce CO2 emissions to the atmosphere. Impeding the use of and research on CCS by not establishing appropriate regulations or even by prohibiting CO2 storage at this early stage, therefore, would pose the risk of losing one potentially important tool to combat climate change.

Suggested Citation

  • Bertram, Christine & Heitmann, Nadine & Narita, Daiju & Schwedeler, Markus, 2012. "How will Germany's CCS policy affect the development of a European CO2 transport infrastructure?," Kiel Policy Brief 43, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkpb:43
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/56379/1/689283873.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Mendelevitch & Johannes Herold & Pao-Yu Oei & Andreas Tissen, 2010. "CO2 Highways for Europe: Modeling a Carbon Capture, Transport and Storage Infrastructure for Europe," Discussion Papers of DIW Berlin 1052, DIW Berlin, German Institute for Economic Research.
    2. Kemp, Alexander G. & Sola Kasim, A., 2010. "A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK Continental Shelf," Energy Policy, Elsevier, vol. 38(7), pages 3652-3667, July.
    3. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    4. Odenberger, M. & Unger, T. & Johnsson, F., 2009. "Pathways for the North European electricity supply," Energy Policy, Elsevier, vol. 37(5), pages 1660-1677, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2018. "Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices," Energy Policy, Elsevier, vol. 115(C), pages 545-560.
    2. Nadine Heitmann & Christine Bertram & Daiju Narita, 2012. "Embedding CCS infrastructure into the European electricity system: a policy coordination problem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
    3. Olivier Massol & Stéphane Tchung-Ming, 2012. "Joining the CCS Club ! Insights from a Northwest European CO2 pipeline project," Working Papers hal-03206457, HAL.
    4. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    5. Kemp, Alexander G. & Kasim, Sola, 2013. "The economics of CO2-EOR cluster developments in the UK Central North Sea," Energy Policy, Elsevier, vol. 62(C), pages 1344-1355.
    6. Jeffrey M. Bielicki & Guillaume Calas & Richard S. Middleton & Minh Ha‐Duong, 2014. "National corridors for climate change mitigation: managing industrial CO 2 emissions in France," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(3), pages 262-277, June.
    7. Sun, Liang & Chen, Wenying, 2013. "The improved ChinaCCS decision support system: A case study for Beijing–Tianjin–Hebei Region of China," Applied Energy, Elsevier, vol. 112(C), pages 793-799.
    8. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    9. Cai, W. & Singham, D.I. & Craparo, E.M. & White, J.A., 2014. "Pricing Contracts Under Uncertainty in a Carbon Capture and Storage Framework," Energy Economics, Elsevier, vol. 43(C), pages 56-62.
    10. Brandon Poiencot & Christopher Brown, 2011. "An Optimal Centralized Carbon Dioxide Repository for Florida, USA," IJERPH, MDPI, vol. 8(4), pages 1-21, March.
    11. Middleton, Richard S. & Eccles, Jordan K., 2013. "The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power," Applied Energy, Elsevier, vol. 108(C), pages 66-73.
    12. Joris Morbee, 2014. "International Transport of Captured $$\hbox {CO}_2$$ CO 2 : Who Can Gain and How Much?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 299-322, March.
    13. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    14. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    15. Pao-Yu Oei and Roman Mendelevitch, 2016. "European Scenarios of CO2 Infrastructure Investment until 2050," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    16. Qianlin Zhu & Chuang Wang & Zhihan Fan & Jing Ma & Fu Chen, 2019. "Optimal matching between CO2 sources in Jiangsu province and sinks in Subei‐Southern South Yellow Sea basin, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 95-105, February.
    17. Cai, W. & Singham, D.I., 2018. "A principal–agent problem with heterogeneous demand distributions for a carbon capture and storage system," European Journal of Operational Research, Elsevier, vol. 264(1), pages 239-256.
    18. Mendelevitch, Roman, 2013. "The Role of CO2-EOR for the Development of a CCTS Infrastructure in the North Sea Region: A Techno-Economic Model and Application," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79950, Verein für Socialpolitik / German Economic Association.
    19. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    20. Qian Wu & Qianguo Lin & Qiang Yang & Yang Li, 2022. "An optimization‐based CCUS source‐sink matching model for dynamic planning of CCUS clusters," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(4), pages 433-453, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkpb:43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.