[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp1/7580.html
   My bibliography  Save this paper

Forecasting national activity using lots of international predictors: an application to New Zealand

Author

Listed:
  • Eickmeier, Sandra
  • Ng, Tim
Abstract
We look at how large international datasets can improve forecasts of national activity. We use the case of New Zealand, an archetypal small open economy. We apply "data-rich" factor and shrinkage methods to tackle the problem of efficiently handling hundreds of predictor data series from many countries. The methods covered are principal components, targeted predictors, weighted principal components, partial least squares, elastic net and ridge regression. Using these methods, we assess the marginal predictive content of international data for New Zealand GDP growth. We find that exploiting a large number of international predictors can improve forecasts of our target variable, compared to more traditional models based on small datasets. This is in spite of New Zealand survey data capturing a substantial proportion of the predictive information in the international data. The largest forecasting accuracy gains from including international predictors are at longer forecast horizons. The forecasting performance achievable with the data-rich methods differs widely, with shrinkage methods and partial least squares performing best. We also assess the type of international data that contains the most predictive information for New Zealand growth over our sample.

Suggested Citation

  • Eickmeier, Sandra & Ng, Tim, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Discussion Paper Series 1: Economic Studies 2009,11, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp1:7580
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/27665/1/200911dkp.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    2. Dungey, Mardi & Fry, Renée, 2009. "The identification of fiscal and monetary policy in a structural VAR," Economic Modelling, Elsevier, vol. 26(6), pages 1147-1160, November.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    5. Artis,Michael & Banerjee,Anindya & Marcellino,Massimiliano (ed.), 2006. "The Central and Eastern European Countries and the European Union," Cambridge Books, Cambridge University Press, number 9780521849548, September.
    6. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    7. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
    8. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic Factor Models," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 3, pages 25-40, Springer.
    9. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    10. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    11. Alfred A. Haug & Christie Smith, 2012. "Local Linear Impulse Responses for a Small Open Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(3), pages 470-492, June.
    12. Denise R Osborn & Pedro J Perez & Marianne Sensier, 2005. "Business Cycle Linkages for the G7 Countries: Does the US Lead the World?," Economics Discussion Paper Series 0527, Economics, The University of Manchester.
    13. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    14. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    15. Marcellino, Massimiliano & Eickmeier, Sandra & Lemke, Wolfgang, 2011. "Classical time-varying FAVAR models - Estimation, forecasting and structural analysis," CEPR Discussion Papers 8321, C.E.P.R. Discussion Papers.
    16. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    17. Troy D. Matheson, 2006. "Factor Model Forecasts for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 2(2), May.
    18. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
    19. Marc-André Gosselin & Greg Tkacz, 2001. "Evaluating Factor Models: An Application to Forecasting Inflation in Canada," Staff Working Papers 01-18, Bank of Canada.
    20. Sandra Eickmeier, 2009. "Comovements and heterogeneity in the euro area analyzed in a non-stationary dynamic factor model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 933-959.
    21. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    22. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
    23. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    24. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    25. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    26. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    27. Chen, Yu-chin & Rogoff, Kenneth, 2003. "Commodity currencies," Journal of International Economics, Elsevier, vol. 60(1), pages 133-160, May.
    28. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    29. Marcellino, Massimiliano & Banerjee, Anindya & Masten, Igor, 2005. "Forecasting macroeconomic variables for the new member states of the European Union," Working Paper Series 482, European Central Bank.
    30. Marc Brisson & Bryan Campbell & John W. Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
    31. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    32. Vansteenkiste, Isabel & Dées, Stéphane, 2007. "The transmission of US cyclical developments to the rest of the world," Working Paper Series 798, European Central Bank.
    33. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    34. Mike Frith & Aaron Drew, 1998. "Forecasting at the Reserve Bank of New Zealand," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 61, December.
    35. John C. Robertson, 2000. "Central bank forecasting: an international comparison," Economic Review, Federal Reserve Bank of Atlanta, vol. 85(Q2), pages 21-32.
    36. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    37. Chris Bloor & Troy Matheson, 2010. "Analysing shock transmission in a data-rich environment: a large BVAR for New Zealand," Empirical Economics, Springer, vol. 39(2), pages 537-558, October.
    38. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    39. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
    40. Buckle, Robert A. & Kim, Kunhong & Kirkham, Heather & McLellan, Nathan & Sharma, Jarad, 2007. "A structural VAR business cycle model for a volatile small open economy," Economic Modelling, Elsevier, vol. 24(6), pages 990-1017, November.
    41. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    42. Stephane Dees & Arthur Saint-Guilhem, 2011. "The role of the United States in the global economy and its evolution over time," Empirical Economics, Springer, vol. 41(3), pages 573-591, December.
    43. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    44. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    45. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    46. Paul Bedford, 2008. "The global financial crisis and its transmission to New Zealand – an external balance sheet analysis," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 71, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    2. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    3. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    6. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    7. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    8. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    9. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
    10. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    11. Kristensen Johannes Tang, 2014. "Factor-based forecasting in the presence of outliers: Are factors better selected and estimated by the median than by the mean?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 309-338, May.
    12. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
    13. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    14. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    15. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
    16. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    17. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    18. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    19. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
    20. Pang, Iris Ai Jao, 2010. "Forecasting Hong Kong economy using factor augmented vector autoregression," MPRA Paper 32495, University Library of Munich, Germany.
    21. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.

    More about this item

    Keywords

    Forecasting; factor models; shrinkage methods; principal components; targeted predictors; weighted principal components; partial least squares;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:7580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.