[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/bofrdp/rdp2013_026.html
   My bibliography  Save this paper

Testing for a unit root in noncausal autoregressive models

Author

Listed:
  • Saikkonen, Pentti
  • Sandberg, Rickard
Abstract
This work develops likelihood-based unit root tests in the noncausal autoregressive (NCAR) model formulated by Lanne and Saikkonen (2011, Journal of Time Series Econometrics 3, Iss. 3, Article 2). The possible unit root is assumed to appear in the causal autoregressive polynomial and for reasons of identification the error term of the model is supposed to be non-Gaussian. In order to derive the tests, asymptotic properties of the maximum likelihood estimators are established under the unit root hypothesis. The limiting distributions of the proposed tests depend on a nuisance parameter determined by the distribution of the error term of the model. A simple procedure to handle this nuisance parameter dependence in applications is proposed. Finite sample properties of the tests are examined by means of Monte Carlo simulations. The results show that the size properties of the tests are satisfactory and the power against stationary NCAR alternatives is significantly higher than the power of conventional Dickey-Fuller tests and the M-tests of Lucas (1995, Econometric Theory 11, 331-346). In an empirical application to a Finnish interest rate series evidence in favour of a stationary NCAR model with leptokurtic errors is found.

Suggested Citation

  • Saikkonen, Pentti & Sandberg, Rickard, 2013. "Testing for a unit root in noncausal autoregressive models," Bank of Finland Research Discussion Papers 26/2013, Bank of Finland.
  • Handle: RePEc:zbw:bofrdp:rdp2013_026
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/212266/1/bof-rdp2013-026.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
    4. Hansen, Bruce E., 1992. "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 8(4), pages 489-500, December.
    5. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    6. Saikkonen, Pentti, 1993. "Continuous Weak Convergence and Stochastic Equicontinuity Results for Integrated Processes with an Application to the Estimation of a Regression Model," Econometric Theory, Cambridge University Press, vol. 9(2), pages 155-188, April.
    7. Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 217-235, April.
    8. Christian Gouriéroux & Jean-Michel Zakoian, 2013. "Explosive Bubble Modelling by Noncausal Process," Working Papers 2013-04, Center for Research in Economics and Statistics.
    9. Lanne, Markku & Luoto, Jani & Saikkonen, Pentti, 2012. "Optimal forecasting of noncausal autoregressive time series," International Journal of Forecasting, Elsevier, vol. 28(3), pages 623-631.
    10. Andrews, Beth & Davis, Richard A. & Jay Breidt, F., 2006. "Maximum likelihood estimation for all-pass time series models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1638-1659, August.
    11. Markku Lanne & Arto Luoma & Jani Luoto, 2012. "Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
    12. Phillips, P.C.B., 1988. "Weak Convergence of Sample Covariance Matrices to Stochastic Integrals Via Martingale Approximations," Econometric Theory, Cambridge University Press, vol. 4(3), pages 528-533, December.
    13. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    14. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
    15. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
    16. Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
    17. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(2), pages 331-346, February.
    18. Adelchi Azzalini & Marc G. Genton, 2008. "Robust Likelihood Methods Based on the Skew‐t and Related Distributions," International Statistical Review, International Statistical Institute, vol. 76(1), pages 106-129, April.
    19. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    20. Jian Huang & Yudi Pawitan, 2000. "Quasi‐likelihood Estimation of Non‐invertible Moving Average Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 689-702, December.
    21. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    22. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    23. Breid, F. Jay & Davis, Richard A. & Lh, Keh-Shin & Rosenblatt, Murray, 1991. "Maximum likelihood estimation for noncausal autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 175-198, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    2. Frédérique Bec & Alain Guay & Heino Bohn Nielsen & Sarra Saïdi, 2022. "Power of unit root tests against nonlinear and noncausal alternatives," THEMA Working Papers 2022-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    3. Anders Rygh Swensen, 2022. "On causal and non‐causal cointegrated vector autoregressive time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 178-196, March.
    4. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    5. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    6. Christian Gouriéroux & Yang Lu, 2023. "Noncausal affine processes with applications to derivative pricing," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 766-796, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zbw:bofrdp:2013_026 is not listed on IDEAS
    2. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    3. Rickard Sandberg, 2015. "M-estimator based unit root tests in the ESTAR framework," Statistical Papers, Springer, vol. 56(4), pages 1115-1135, November.
    4. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    5. Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1349-1375, December.
    6. Meitz, Mika & Saikkonen, Pentti, 2013. "Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 227-255.
    7. Lanne Markku, 2015. "Noncausality and inflation persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 469-481, September.
    8. Sandberg, Rickard, 2016. "Trends, unit roots, structural changes, and time-varying asymmetries in U.S. macroeconomic data: the Stock and Watson data re-examined," Economic Modelling, Elsevier, vol. 52(PB), pages 699-713.
    9. Dong Wan Shin & Oesook Lee, 2004. "M‐Estimation for regressions with integrated regressors and arma errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 283-299, March.
    10. Hernández, Juan R., 2016. "Unit Root Testing in ARMA Models: A Likelihood Ratio Approach," MPRA Paper 100857, University Library of Munich, Germany.
    11. Lanne Markku & Saikkonen Pentti, 2011. "Noncausal Autoregressions for Economic Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    12. Jean-Baptiste MICHAU, 2019. "Helicopter Drops of Money under Secular Stagnation," Working Papers 2019-10, Center for Research in Economics and Statistics.
    13. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    14. Minxian, Yang, 1998. "System estimators of cointegrating matrix in absence of normalising information," Journal of Econometrics, Elsevier, vol. 85(2), pages 317-337, August.
    15. Lof Matthijs, 2013. "Noncausality and asset pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 211-220, April.
    16. Peter C.B. Phillips, 1994. "Nonstationary Time Series and Cointegration: Recent Books and Themes for the Future," Cowles Foundation Discussion Papers 1081, Cowles Foundation for Research in Economics, Yale University.
    17. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2011. "A Class of Simple Distribution-free Rank-based Unit Root Tests (Revision of DP 2010-72)," Other publications TiSEM 004c9726-ec6a-4884-8238-d, Tilburg University, School of Economics and Management.
    18. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    19. Hamdi Raissi, 2022. "On the dependence structure of the trade/no trade sequence of illiquid assets," Papers 2203.08223, arXiv.org.
    20. Hecq, A.W. & Lieb, L.M. & Telg, J.M.A., 2015. "Identification of Mixed Causal-Noncausal Models : How Fat Should We Go?," Research Memorandum 035, Maastricht University, Graduate School of Business and Economics (GSBE).
    21. M. Hashem Pesaran & Yongcheol Shin, 2002. "Long-Run Structural Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bofrdp:rdp2013_026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/bofgvfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.