[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/498.html
   My bibliography  Save this paper

Impulse response matching estimators for DSGE models

Author

Listed:
  • Guerron-Quintana, Pablo
  • Inoue, Atsushi
  • Kilian, Lutz
Abstract
One of the leading methods of estimating the structural parameters of DSGE mod- els is the VAR-based impulse response matching estimator. The existing asympotic theory for this estimator does not cover situations in which the number of impulse response parameters exceeds the number of VAR model parameters. Situations in which this order condition is violated arise routinely in applied work. We establish the consistency of the impulse response matching estimator in this situation, we derive its asymptotic distribution, and we show how this distribution can be approximated by bootstrap methods. Our methods of inference remain asymptotically valid when the order condition is satisfied, regardless of whether the usual rank condition for the application of the delta method holds. Our analysis sheds new light on the choice of the weighting matrix and covers both weakly and strongly identified DSGE model parameters. We also show that under our assumptions special care is needed to ensure the asymptotic validity of Bayesian methods of inference. A simulation study suggests that the frequentist and Bayesian point and interval estimators we propose are reasonably accurate in finite samples. We also show that using these methods may affect the substantive conclusions in empirical work.

Suggested Citation

  • Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2014. "Impulse response matching estimators for DSGE models," CFS Working Paper Series 498, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:498
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/104818/1/810718316.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    2. Dovonon, Prosper & Gonçalves, Sílvia, 2017. "Bootstrapping the GMM overidentification test under first-order underidentification," Journal of Econometrics, Elsevier, vol. 201(1), pages 43-71.
    3. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    4. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    5. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    6. Ben S. Bernanke & Julio J. Rotemberg (ed.), 1997. "NBER Macroeconomics Annual 1997," MIT Press Books, The MIT Press, edition 1, volume 1, number 026252242x, April.
    7. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    8. Riccardo DiCecio, 2004. "Comovement: it's not a puzzle," 2004 Meeting Papers 113, Society for Economic Dynamics.
    9. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Smooth Functions of Slope Parameters and Innovation Variances in VAR (∞) Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(2), pages 309-332, May.
    10. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    11. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    12. Bao, Yong, 2007. "The Approximate Moments Of The Least Squares Estimator For The Stationary Autoregressive Model Under A General Error Distribution," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1013-1021, October.
    13. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    14. Peter J. Klenow & Oleksiy Kryvtsov, 2008. "State-Dependent or Time-Dependent Pricing: Does it Matter for Recent U.S. Inflation?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(3), pages 863-904.
    15. DiCecio, Riccardo, 2009. "Sticky wages and sectoral labor comovement," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 538-553, March.
    16. Zheng Liu & Daniel F. Waggoner & Tao Zha, 2011. "Sources of macroeconomic fluctuations: A regime‐switching DSGE approach," Quantitative Economics, Econometric Society, vol. 2(2), pages 251-301, July.
    17. Hall, Alastair R. & Inoue, Atsushi & Nason, James M. & Rossi, Barbara, 2012. "Information criteria for impulse response function matching estimation of DSGE models," Journal of Econometrics, Elsevier, vol. 170(2), pages 499-518.
    18. Matteo Iacoviello, 2005. "House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle," American Economic Review, American Economic Association, vol. 95(3), pages 739-764, June.
    19. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    20. Antoine, Bertille & Renault, Eric, 2012. "Efficient minimum distance estimation with multiple rates of convergence," Journal of Econometrics, Elsevier, vol. 170(2), pages 350-367.
    21. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    22. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2016. "Unemployment and Business Cycles," Econometrica, Econometric Society, vol. 84(4), pages 1523-1569, July.
    23. Julio J. Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361, National Bureau of Economic Research, Inc.
    24. Chaudhuri, Saraswata & Zivot, Eric, 2011. "A new method of projection-based inference in GMM with weakly identified nuisance parameters," Journal of Econometrics, Elsevier, vol. 164(2), pages 239-251, October.
    25. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    26. Riccardo DiCecio & Edward Nelson, 2007. "An estimated DSGE model for the United Kingdom," Review, Federal Reserve Bank of St. Louis, vol. 89(Jul), pages 215-232.
    27. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    28. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    29. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    30. Horowitz, J., 1996. "Bootstrap Critical Values For Tests Based On The Smoothed Maximum Score Estimator," SFB 373 Discussion Papers 1996,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    31. Dupor, Bill & Han, Jing & Tsai, Yi-Chan, 2009. "What do technology shocks tell us about the New Keynesian paradigm?," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 560-569, May.
    32. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    33. Dridi, Ramdan & Guay, Alain & Renault, Eric, 2007. "Indirect inference and calibration of dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 136(2), pages 397-430, February.
    34. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    35. Isaiah Andrews & Anna Mikusheva, 2015. "Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 6(1), pages 123-152, March.
    36. Emi Nakamura & Jón Steinsson, 2008. "Five Facts about Prices: A Reevaluation of Menu Cost Models," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(4), pages 1415-1464.
    37. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    38. Anna Kormilitsina & Denis Nekipelov, 2016. "Consistent Variance Of The Laplace‐Type Estimators: Application To Dsge Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57, pages 603-622, May.
    39. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    40. Zhongjun Qu, 2014. "Inference in dynamic stochastic general equilibrium models with possible weak identification," Quantitative Economics, Econometric Society, vol. 5, pages 457-494, July.
    41. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    42. Lutkepohl, Helmut, 1990. "Asymptotic Distributions of Impulse Response Functions and Forecast Error Variance Decompositions of Vector Autoregressive Models," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 116-125, February.
    43. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2013. "Identification-robust analysis of DSGE and structural macroeconomic models," Journal of Monetary Economics, Elsevier, vol. 60(3), pages 340-350.
    44. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    2. Hall, Alastair R. & Inoue, Atsushi & Nason, James M. & Rossi, Barbara, 2012. "Information criteria for impulse response function matching estimation of DSGE models," Journal of Econometrics, Elsevier, vol. 170(2), pages 499-518.
    3. Federico Di Pace & Matthias Hertweck, 2019. "Labor Market Frictions, Monetary Policy, and Durable Goods," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 274-304, April.
    4. Carrillo, Julio A., 2012. "How well does sticky information explain the dynamics of inflation, output, and real wages?," Journal of Economic Dynamics and Control, Elsevier, vol. 36(6), pages 830-850.
    5. Castelnuovo, Efrem & Pellegrino, Giovanni, 2018. "Uncertainty-dependent effects of monetary policy shocks: A new-Keynesian interpretation," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 277-296.
    6. Poghosyan, Karen & Boldea, Otilia, 2013. "Structural versus matching estimation: Transmission mechanisms in Armenia," Economic Modelling, Elsevier, vol. 30(C), pages 136-148.
    7. Francisco RUGE-MURCIA, 2014. "Indirect Inference Estimation of Nonlinear Dynamic General Equilibrium Models : With an Application to Asset Pricing under Skewness Risk," Cahiers de recherche 15-2014, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Poghosyan, K., 2012. "Structural and reduced-form modeling and forecasting with application to Armenia," Other publications TiSEM ad1a24c3-15e6-4f04-b338-3, Tilburg University, School of Economics and Management.
    9. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2018. "On DSGE Models," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 113-140, Summer.
    10. Danthine, Jean-Pierre & Kurmann, André, 2010. "The business cycle implications of reciprocity in labor relations," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 837-850, October.
    11. Ambler, Steve & Guay, Alain & Phaneuf, Louis, 2012. "Endogenous business cycle propagation and the persistence problem: The role of labor-market frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 47-62.
    12. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2010. "On the precision of Calvo parameter estimates in structural NKPC models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1582-1595, September.
    13. Theodoridis, Konstantinos, 2011. "An efficient minimum distance estimator for DSGE models," Bank of England working papers 439, Bank of England.
    14. Ruge-Murcia, Francisco, 2020. "Estimating nonlinear dynamic equilibrium models by matching impulse responses," Economics Letters, Elsevier, vol. 197(C).
    15. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    16. Yasufumi Gemma & Takushi Kurozumi & Mototsugu Shintani, 2023. "Trend Inflation and Evolving Inflation Dynamics:A Bayesian GMM Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 506-520, December.
    17. Poilly, Céline, 2010. "Does money matter for the identification of monetary policy shocks: A DSGE perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2159-2178, October.
    18. Debes, Sebastian & Gareis, Johannes & Mayer, Eric & Rüth, Sebastian, 2014. "Towards a consumer sentiment channel of monetary policy," W.E.P. - Würzburg Economic Papers 91, University of Würzburg, Department of Economics.
    19. Polbin, Andrey & Sinelnikov-Murylev, Sergey, 2024. "Developing and impulse response matching estimation of the DSGE model for the Russian economy," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 73, pages 5-34.
    20. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.

    More about this item

    Keywords

    structural estimation; DSGE; VAR; impulse response; nonstandard asymptotics; bootstrap; weak identification; robust inference;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • E50 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ifkcfde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.