[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/201811.html
   My bibliography  Save this paper

On the estimation of behavioral macroeconomic models via simulated maximum likelihood

Author

Listed:
  • Kukacka, Jiri
  • Jang, Tae-Seok
  • Sacht, Stephen
Abstract
In this paper, we introduce the simulated maximum likelihood method for identifying behavioral heuristics of heterogeneous agents in the baseline three-equation New Keynesian model. The method is extended to multivariate macroeconomic optimization problems, and the estimation pro-cedure is applied to empirical data sets. This approach considerably relaxes restrictive theoretical assumptions and enables a novel estimation of the intensity of choice parameter in discrete choice. In Monte Carlo simulations, we analyze the properties and behavior of the estimation method, which provides important information on the behavioral parameters of the New Keynesian model. However, the curse of dimensionality arises via a consistent downward bias for idiosyncratic shocks. Our empirical results show that the forward-looking version of both the behavioral and the rational model specifications exhibits good performance. We identify potential sources of misspecification for the hybrid version. A novel feature of our analysis is that we pin down the switching parameter for the intensity of choice for the Euro Area and US economy.

Suggested Citation

  • Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:201811
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/190330/1/EWP-2018-11.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:hal:spmain:info:hdl:2441/4pa18fd9lf9h59m4vfavfcf61e is not listed on IDEAS
    2. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    3. Franke, Reiner & Jang, Tae-Seok & Sacht, Stephen, 2015. "Moment matching versus Bayesian estimation: Backward-looking behaviour in a New-Keynesian baseline model," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 126-154.
    4. Bertrand Munier & Reinhard Selten & D. Bouyssou & P. P. Bourgine & R. Day & N. Harvey & D. Hilton & M. Machina & Ph. Parker & J. Sterman & E. Weber & B. Wernerfelt & R. Wensley, 1999. "Bounded rationality modeling," Post-Print hal-02361947, HAL.
    5. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    6. G. Fagiolo & C. Birchenhall & P. Windrum, 2007. "Empirical Validation in Agent-based Models: Introduction to the Special Issue," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 189-194, October.
    7. Paul De Grauwe, 2014. "Booms and Busts in Economic Activity: A Behavioral Explanation," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 19, pages 521-556, World Scientific Publishing Co. Pte. Ltd..
    8. Sylvain Barde & Sander van Der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Working Papers hal-03458672, HAL.
    9. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    10. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    11. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    12. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
    13. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    14. V. V Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2002. "Can Sticky Price Models Generate Volatile and Persistent Real Exchange Rates?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 533-563.
    15. Jang, Tae-Seok & Sacht, Stephen, 2021. "Forecast heuristics, consumer expectations, and New-Keynesian macroeconomics: A Horse race," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 493-511.
    16. Jang, Tae-Seok & Sacht, Stephen, 2017. "Modeling consumer confidence and its role for expectation formation: A horse race," Economics Working Papers 2017-04, Christian-Albrechts-University of Kiel, Department of Economics.
    17. Tiziana Assenza & Te Bao & Cars Hommes & Domenico Massaro, 2014. "Experiments on Expectations in Macroeconomics and Finance," Research in Experimental Economics, in: Experiments in Macroeconomics, volume 17, pages 11-70, Emerald Group Publishing Limited.
    18. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    19. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    20. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    21. Hommes,Cars, 2015. "Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems," Cambridge Books, Cambridge University Press, number 9781107564978, September.
    22. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    23. Paul Grauwe, 2011. "Animal spirits and monetary policy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 423-457, June.
    24. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    25. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    26. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
    27. Liu, Chunping & Minford, Patrick, 2014. "Comparing behavioural and rational expectations for the US post-war economy," Economic Modelling, Elsevier, vol. 43(C), pages 407-415.
    28. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    29. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    30. Fagan, Gabriel & Henry, Jérôme & Mestre, Ricardo, 2001. "An area-wide model (AWM) for the euro area," Working Paper Series 42, European Central Bank.
    31. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    32. Paul De Grauwe, 2010. "Top-Down versus Bottom-Up Macroeconomics," CESifo Economic Studies, CESifo Group, vol. 56(4), pages 465-497, December.
    33. Szabolcs Deák & Paul Levine & Joseph Pearlman & Bo Yang, 2017. "Internal Rationality, Learning and Imperfect Information," School of Economics Discussion Papers 0817, School of Economics, University of Surrey.
    34. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    35. Lee, Donghoon & Song, Kyungchul, 2015. "Simulated maximum likelihood estimation for discrete choices using transformed simulated frequencies," Journal of Econometrics, Elsevier, vol. 187(1), pages 131-153.
    36. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    37. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    38. Tae-Seok Jang & Stephen Sacht, 2016. "Animal Spirits and the Business Cycle: Empirical Evidence from Moment Matching," Metroeconomica, Wiley Blackwell, vol. 67(1), pages 76-113, February.
    39. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    40. Filippo Altissimo & Antonio Mele, 2009. "Simulated Non-Parametric Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 413-450.
    41. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    42. Reiner Franke, 2018. "Competitive moment matching of a New-Keynesian and an Old-Keynesian model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 201-239, July.
    43. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
    44. Blake LeBaron & Leigh Tesfatsion, 2008. "Modeling Macroeconomies as Open-Ended Dynamic Systems of Interacting Agents," American Economic Review, American Economic Association, vol. 98(2), pages 246-250, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, Tae-Seok & Sacht, Stephen, 2021. "Forecast heuristics, consumer expectations, and New-Keynesian macroeconomics: A Horse race," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 493-511.
    2. Paul De Grauwe & Yuemei Ji, 2023. "On the use of current and forward-looking data in monetary policy: a behavioural macroeconomic approach," Oxford Economic Papers, Oxford University Press, vol. 75(2), pages 526-552.
    3. Vojtech Molnar, 2022. "Price Level Targeting with Imperfect Rationality: A Heuristic Approach," Working Papers 2022/1, Czech National Bank.
    4. De Grauwe, Paul & Ji, Yuemei, 2020. "Structural reforms, animal spirits, and monetary policies," European Economic Review, Elsevier, vol. 124(C).
    5. De Grauwe, Paul & Ji, Yuemei, 2023. "On the use of current and forward-looking data in monetary policy: a behavioural macroeconomic approach," LSE Research Online Documents on Economics 115547, London School of Economics and Political Science, LSE Library.
    6. Paul De Grauwe & Yuemei Ji, 2021. "On the Use of Current or Forward-Looking Data in Monetary Policy: A Behavioural Macroeconomic Approach," CESifo Working Paper Series 8853, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    2. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    4. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    5. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    6. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    7. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    8. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    9. repec:hal:spmain:info:hdl:2441/20hflp7eqn97boh50no50tv67n is not listed on IDEAS
    10. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    11. Jang, Tae-Seok & Sacht, Stephen, 2021. "Forecast heuristics, consumer expectations, and New-Keynesian macroeconomics: A Horse race," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 493-511.
    12. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    13. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    14. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    15. Giovanni Dosi & Andrea Roventini, 2019. "More is different ... and complex! the case for agent-based macroeconomics," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 1-37, March.
    16. Severin Reissl, 2021. "Heterogeneous expectations, forecasting behaviour and policy experiments in a hybrid Agent-based Stock-flow-consistent model," Journal of Evolutionary Economics, Springer, vol. 31(1), pages 251-299, January.
    17. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    18. Tae-Seok Jang & Stephen Sacht, 2022. "Macroeconomic dynamics under bounded rationality: on the impact of consumers’ forecast heuristics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(3), pages 849-873, July.
    19. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    20. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    21. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    22. Schmitt, Noemi, 2018. "Heterogeneous expectations and asset price dynamics," BERG Working Paper Series 134, Bamberg University, Bamberg Economic Research Group.

    More about this item

    Keywords

    Behavioral Heuristics; Intensity of Choice; Monte Carlo Simulations; New-Keynesian Model; Simulated Maximum Likelihood;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian; Modern Monetary Theory
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:201811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vakiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.