[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/wop/pennin/98-16.html
   My bibliography  Save this paper

Horizon Problems and Extreme Events in Financial Risk Management

Author

Listed:
  • Peter F. Christoffersen
  • Francis X. Diebold
  • Til Schuermann
Abstract
Central to the ongoing development of practical financial risk management methods is recognition of the fact that asset return volatility is often forecastable. Although there is no single horizon relevant for financial risk management, most would agree that in many situations the relevant horizon is quite long, certainly longer than a few days. This fact creates some tension, because although short-horizon asset return volatility is clearly highly forecastable, much less is known about long-horizon volatility forecastability, which we examine in this paper. We begin by assessing some common model-based methods for converting short-horizon volatility into long-horizon volatility; we argue that such conversions are problematic even when done properly. Hence we develop and apply a new model-free methodology to assess the forecastability of volatility across horizons and find, surprisingly, that forecastability decays rapidly as the horizon lengthens. We conclude that for managing risk at horizons longer than a few weeks, attention given to direct estimation of extreme event probabilities may be more productive than attention given to modeling volatility dynamics, and we proceed to assess the potential of extreme value theory for estimating extreme event probabilities.

Suggested Citation

  • Peter F. Christoffersen & Francis X. Diebold & Til Schuermann, 1998. "Horizon Problems and Extreme Events in Financial Risk Management," Center for Financial Institutions Working Papers 98-16, Wharton School Center for Financial Institutions, University of Pennsylvania.
  • Handle: RePEc:wop:pennin:98-16
    as

    Download full text from publisher

    File URL: http://fic.wharton.upenn.edu/fic/papers/98/9816.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Francis X. Diebold & Til Schuermann & John D. Stroughair, 2000. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(2), pages 30-35, January.
    3. Diebold & Lopez, "undated". "Modeling Volatility Dynamics," Home Pages _062, University of Pennsylvania.
    4. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    5. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    6. Francis X. Diebold & Andrew Hickman & Atsushi Inoue & Til Schuermann, 1997. "Converting 1-Day Volatility to h-Day Volatitlity: Scaling by Root-h is Worse Than You Think," Center for Financial Institutions Working Papers 97-34, Wharton School Center for Financial Institutions, University of Pennsylvania.
    7. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    8. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    9. Shorrocks, A F, 1978. "The Measurement of Mobility," Econometrica, Econometric Society, vol. 46(5), pages 1013-1024, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    2. Wolff, Christian & Lehnert, Thorsten, 2001. "Modelling Scale-Consistent VaR with the Truncated Lévy Flight," CEPR Discussion Papers 2711, C.E.P.R. Discussion Papers.
    3. Burkhard Raunig, 2003. "Testing for Longer Horizon Predictability of Return Volatility with an Application to the German," Working Papers 86, Oesterreichische Nationalbank (Austrian Central Bank).
    4. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    5. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    6. Odening, Martin & Hinrichs, Jan, 2003. "Die Quantifizierung von Marktrisiken in der Tierproduktion mittels Value-at-Risk und Extreme-Value-Theory," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 52(02), pages 1-11.
    7. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    8. Odening, Martin & Hinrichs, Jan, 2002. "Assessment Of Market Risk In Hog Production Using Value-At-Risk And Extreme Value Theory," 2002 Annual meeting, July 28-31, Long Beach, CA 19907, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. repec:onb:oenbwp:y::i:86:b:1 is not listed on IDEAS
    11. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    12. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    13. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    14. Francis X. Diebold & Andrew Hickman & Atsushi Inoue & Til Schuermann, 1997. "Converting 1-Day Volatility to h-Day Volatitlity: Scaling by Root-h is Worse Than You Think," Center for Financial Institutions Working Papers 97-34, Wharton School Center for Financial Institutions, University of Pennsylvania.
    15. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    16. Wang, Jying-Nan & Du, Jiangze & Hsu, Yuan-Teng, 2018. "Measuring long-term tail risk: Evaluating the performance of the square-root-of-time rule," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 120-138.
    17. El Bouhadi, Abdelhamid & Achibane, Khalid, 2009. "The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?," MPRA Paper 19482, University Library of Munich, Germany.
    18. Smith, J.Q. & Santos, Antonio A.F., 2006. "Second-Order Filter Distribution Approximations for Financial Time Series With Extreme Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 329-337, July.
    19. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    20. Turan G. Bali, 2007. "A Generalized Extreme Value Approach to Financial Risk Measurement," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1613-1649, October.
    21. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:pennin:98-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fiupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.