[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/wfo/wpaper/y2020i601.html
   My bibliography  Save this paper

The Potential Capital Requirement for a Minimum Prices Insurance Scheme for Wheat, Maize, and Rape Seed

Author

Listed:
  • Thomas Url

    (WIFO)

  • Serguei Kaniovski
Abstract
In 2005 the EU lowered the guaranteed minimum prices for crops in its Common Agricultural Policy and stopped market interventions. Consequently, prices started to fluctuate more intensively, and farmers' incomes are now subject to higher price volatility. A crop price insurance scheme could provide an interesting instrument to stabilise the income of European farmers. We analyse the premium level and capital requirement of a hypothetical insurance contract covering several combinations of minimum prices for a bundle of wheat, maize, and rape seed. The premium level is based on the Black option pricing model and a Bayesian autoregressive stochastic volatility model. Monte Carlo simulated forecasts provide estimates for expected variances and a profit-loss distribution for various combinations of minimum prices. The required solvency capital to keep the insurance business afloat at the 1 percent ruin probability creates capital costs exceeding the expected profit.

Suggested Citation

  • Thomas Url & Serguei Kaniovski, 2020. "The Potential Capital Requirement for a Minimum Prices Insurance Scheme for Wheat, Maize, and Rape Seed," WIFO Working Papers 601, WIFO.
  • Handle: RePEc:wfo:wpaper:y:2020:i:601
    as

    Download full text from publisher

    File URL: https://www.wifo.ac.at/wwa/pubid/65928
    File Function: abstract
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    2. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 143-151, June.
    3. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    4. Robert J. Myers & Steven D. Hanson, 1993. "Pricing Commodity Options when the Underlying Futures Price Exhibits Time-Varying Volatility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(1), pages 121-130.
    5. Thomas Url, 2019. "Favourable Business Cycle Conditions Support Premium Growth in Private Insurance," WIFO Bulletin, WIFO, vol. 24(16), pages 143-152, December.
    6. Bardsley, Peter & Cashin, Paul, 1990. "Underwriting Assistance To The Australian Wheat Industry - An Application Of Option Pricing Theory," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 34(3), pages 1-11, December.
    7. Steen Koekebakker & Gudbrand Lien, 2004. "Volatility and Price Jumps in Agricultural Futures Prices—Evidence from Wheat Options," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1018-1031.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Kastner, Gregor, 2016. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
    10. N'zue Fofana & B. Wade Brorsen, 2001. "GARCH option pricing with implied volatility," Applied Economics Letters, Taylor & Francis Journals, vol. 8(5), pages 335-340.
    11. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    3. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Forecasting Livestock Feed Cost Risks Using Futures and Options," 2005 Conference, April 18-19, 2005, St. Louis, Missouri 19048, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    4. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Managing Livestock Feed Cost Risks Using Futures and Options," 2005 Annual meeting, July 24-27, Providence, RI 19399, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    7. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    8. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    9. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    10. Chad E. Hart & Sergio H. Lence & Dermot J. Hayes & Na Jin, 2016. "Price Mean Reversion, Seasonality, and Options Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 707-725.
    11. Dammak, Wael & Hamad, Salah Ben & de Peretti, Christian & Eleuch, Hichem, 2023. "Pricing of European currency options considering the dynamic information costs," Global Finance Journal, Elsevier, vol. 58(C).
    12. Roberto Andreotti Bodra & Afonso De Campos Pint, 2014. "Modelo De Volatilidade Estocástica Com Saltos Aplicado A Commodities Agrícolas," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 142, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    13. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.
    15. Hilliard, Jitka, 2013. "Testing Greeks and price changes in the S&P 500 options and futures contract: A regression analysis," International Review of Financial Analysis, Elsevier, vol. 26(C), pages 51-58.
    16. Yen, Simon & Wang, Jai Jen, 2009. "Information-time based futures pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3826-3836.
    17. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Empirical Performance of Alternative Option Pricing Models for Commodity Futures Options," 2005 Annual meeting, July 24-27, Providence, RI 19183, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.
    19. Brandt, Michael W. & Wu, Tao, 2002. "Cross-sectional tests of deterministic volatility functions," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 525-550, December.

    More about this item

    Keywords

    crop insurance program; option pricing; time varying volatility;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wfo:wpaper:y:2020:i:601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Mayr (email available below). General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.