[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/urv/wpaper/2072-535076.html
   My bibliography  Save this paper

Average monotonic cooperative games with nontransferable utility

Author

Listed:
  • Giménez-Gómez, José Manuel
  • Sudhölter, Peter
  • Vilella Bach, Misericòrdia
Abstract
A non-negative transferable utility (TU) game is average monotonic if there exists a non-negative allocation according to which the relative worth is not decreasing when enlarging the coalition. We generalize this definition to the nontransferable utility (NTU) case. It is shown that an average monotonic NTU game shares several properties with an average monotonic TU game. In particular it has a special core element and there exists a population monotonic allocation scheme. We show that an NTU bankruptcy game is average monotonic with respect to the claims vector. Keywords: nontransferable utility; average monotonicity; core; population monotonicity JEL classification: C71

Suggested Citation

  • Giménez-Gómez, José Manuel & Sudhölter, Peter & Vilella Bach, Misericòrdia, 2022. "Average monotonic cooperative games with nontransferable utility," Working Papers 2072/535076, Universitat Rovira i Virgili, Department of Economics.
  • Handle: RePEc:urv:wpaper:2072/535076
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2072/535076
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lloyd S. Shapley, 1967. "On balanced sets and cores," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(4), pages 453-460.
    2. Guni Orshan & Federico Valenciano & José M. Zarzuelo, 2003. "The Bilateral Consistent Prekernel, the Core, and NTU Bankruptcy Problems," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 268-282, May.
    3. Bezalel Peleg & Stef Tijs & Peter Borm & Gert-Jan Otten, 1998. "The MC-value for monotonic NTU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 37-47.
    4. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    5. Moulin, H, 1990. "Cores and Large Cores When Population Varies," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 219-232.
    6. Mas-Colell, Andreu, 1989. "An equivalence theorem for a bargaining set," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 129-139, April.
    7. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    8. Izquierdo, Josep M. & Rafels, Carles, 2001. "Average Monotonic Cooperative Games," Games and Economic Behavior, Elsevier, vol. 36(2), pages 174-192, August.
    9. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Bargaining and Value," Econometrica, Econometric Society, vol. 64(2), pages 357-380, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Grabisch & Hervé Moulin & José Manuel Zarzuelo, 2024. "Professor Peter Sudhölter (1957–2024)," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 289-294, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Doudou & Dietzenbacher, Bas & Peters, Hans, 2022. "A random arrival rule for NTU-bankruptcy problems," Economics Letters, Elsevier, vol. 218(C).
    2. Dietzenbacher, Bas & Yanovskaya, Elena, 2023. "The equal split-off set for NTU-games," Mathematical Social Sciences, Elsevier, vol. 121(C), pages 61-67.
    3. Jesús Getán & Josep Izquierdo & Jesús Montes & Carles Rafels, 2015. "The bargaining set for almost-convex games," Annals of Operations Research, Springer, vol. 225(1), pages 83-89, February.
    4. Elena Iñarra & Roberto Serrano & Ken-Ichi Shimomura, 2020. "The Nucleolus, the Kernel, and the Bargaining Set: An Update," Revue économique, Presses de Sciences-Po, vol. 71(2), pages 225-266.
    5. Josep Maria Izquierdo Aznar, 2003. "Regular Population Monotonic Allocation Schemes and the Core," Working Papers in Economics 110, Universitat de Barcelona. Espai de Recerca en Economia.
    6. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    7. Paula Corcho & José Ferreira, 2003. "Generalized externality games," Theory and Decision, Springer, vol. 54(2), pages 163-184, March.
    8. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    9. Sylvain Béal & Stéphane Gonzalez & Philippe Solal & Peter Sudhölter, 2023. "Axiomatic characterizations of the core without consistency," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 687-701, September.
    10. Arantza Estévez-Fernández & Peter Borm & M. Gloria Fiestras-Janeiro, 2020. "Nontransferable utility bankruptcy games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 154-177, April.
    11. Dietzenbacher, Bas, 2018. "Bankruptcy games with nontransferable utility," Mathematical Social Sciences, Elsevier, vol. 92(C), pages 16-21.
    12. Takaaki Abe, 2020. "Population monotonic allocation schemes for games with externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 97-117, March.
    13. Serrano, Roberto, 1997. "A comment on the Nash program and the theory of implementation," Economics Letters, Elsevier, vol. 55(2), pages 203-208, August.
    14. Izquierdo, Josep M. & Rafels, Carles, 2001. "Average Monotonic Cooperative Games," Games and Economic Behavior, Elsevier, vol. 36(2), pages 174-192, August.
    15. Alparslan-Gok, S.Z. & Miquel, S. & Tijs, S.H., 2008. "Cooperation under Interval Uncertainty," Other publications TiSEM 9a01bd57-964d-4e71-8508-7, Tilburg University, School of Economics and Management.
    16. Montero, Maria, 2002. "Non-cooperative bargaining in apex games and the kernel," Games and Economic Behavior, Elsevier, vol. 41(2), pages 309-321, November.
    17. Gabrielle Demange, 2017. "The stability of group formation," Revue d'économie politique, Dalloz, vol. 127(4), pages 495-516.
    18. Meca, Ana & Timmer, Judith & Garcia-Jurado, Ignacio & Borm, Peter, 2004. "Inventory games," European Journal of Operational Research, Elsevier, vol. 156(1), pages 127-139, July.
      • Meca-Martinez, A. & Timmer, J.B. & Garcia-Jurado, I. & Borm, P.E.M., 1999. "Inventory Games," Other publications TiSEM 21f26b3f-7fae-4f19-908f-a, Tilburg University, School of Economics and Management.
      • Meca, A. & Timmer, J.B. & Garcia-Jurado, I. & Borm, P.E.M., 2004. "Inventory games," Other publications TiSEM 49368f2d-02fc-49c9-9d74-8, Tilburg University, School of Economics and Management.
      • Meca-Martinez, A. & Timmer, J.B. & Garcia-Jurado, I. & Borm, P.E.M., 1999. "Inventory Games," Discussion Paper 1999-53, Tilburg University, Center for Economic Research.
    19. Frank Karsten & Marco Slikker & Geert‐Jan van Houtum, 2012. "Inventory pooling games for expensive, low‐demand spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 311-324, August.
    20. Calleja, Pedro & Borm, Peter & Hendrickx, Ruud, 2005. "Multi-issue allocation situations," European Journal of Operational Research, Elsevier, vol. 164(3), pages 730-747, August.

    More about this item

    Keywords

    Jocs cooperatius (Matemàtica); 33 - Economia;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:urv:wpaper:2072/535076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ariadna Casals (email available below). General contact details of provider: https://edirc.repec.org/data/deurves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.