[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ucd/wpaper/201224.html
   My bibliography  Save this paper

Estimating bank loans loss given default by generalized additive models

Author

Listed:
  • Raffaella Calabrese

    (University of Milano-Bicocca)

Abstract
With the implementation of the Basel II accord, the development of accurate loss given default models is becoming increasingly important. The main objective of this paper is to propose a new model to estimate Loss Given Default (LGD) for bank loans by applying generalized additive models. Our proposal allows to represent the high concentration of LGDs at the boundaries. The model is useful in uncovering nonlinear covariate effects and in estimating the mean and the variance of LGDs. The suggested model is applied to a comprehensive survey on loan recovery process of Italian banks. To model LGD in downturn conditions, we include macroeconomic variables in the model. Out-of-time validation shows that our model outperforms popular models like Tobit, decision tree and linear regression models for different time horizons.

Suggested Citation

  • Raffaella Calabrese, 2012. "Estimating bank loans loss given default by generalized additive models," Working Papers 201224, Geary Institute, University College Dublin.
  • Handle: RePEc:ucd:wpaper:201224
    as

    Download full text from publisher

    File URL: http://www.ucd.ie/geary/static/publications/workingpapers/gearywp201224.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radovan Chalupka & Juraj Kopecsni, 2009. "Modeling Bank Loan LGD of Corporate and SME Segments: A Case Study," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(4), pages 360-382, Oktober.
    2. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    3. Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
    4. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    5. Stefano Caselli & Stefano Gatti & Francesca Querci, 2008. "The Sensitivity of the Loss Given Default Rate to Systematic Risk: New Empirical Evidence on Bank Loans," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 1-34, August.
    6. Bellotti, Tony & Crook, Jonathan, 2012. "Loss given default models incorporating macroeconomic variables for credit cards," International Journal of Forecasting, Elsevier, vol. 28(1), pages 171-182.
    7. Dermine, J. & de Carvalho, C. Neto, 2006. "Bank loan losses-given-default: A case study," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1219-1243, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Nehrebecka, 2019. "Bank loans recovery rate in commercial banks: A case study of non-financial corporations," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 139-172.
    2. Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
    3. Stephan Höcht & Aleksey Min & Jakub Wieczorek & Rudi Zagst, 2022. "Explaining Aggregated Recovery Rates," Risks, MDPI, vol. 10(1), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Konecny & Jakub Seidler & Aelta Belyaeva & Konstantin Belyaev, 2017. "The Time Dimension of the Links Between Loss Given Default and the Macroeconomy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 67(6), pages 462-491, October.
    2. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    3. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    4. Gürtler, Marc & Hibbeln, Martin, 2013. "Improvements in loss given default forecasts for bank loans," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2354-2366.
    5. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    6. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    7. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank.
    8. Cheng, Dan & Cirillo, Pasquale, 2018. "A reinforced urn process modeling of recovery rates and recovery times," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 1-17.
    9. Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
    10. Natalia Nehrebecka, 2019. "Bank loans recovery rate in commercial banks: A case study of non-financial corporations," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 139-172.
    11. Han, Chulwoo & Jang, Youngmin, 2013. "Effects of debt collection practices on loss given default," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 21-31.
    12. Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
    13. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    14. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    15. Tanoue, Yuta & Kawada, Akihiro & Yamashita, Satoshi, 2017. "Forecasting loss given default of bank loans with multi-stage model," International Journal of Forecasting, Elsevier, vol. 33(2), pages 513-522.
    16. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    17. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Corporate Loan Recovery Rates under Downturn Conditions in a Developing Economy: Evidence from Zimbabwe," Risks, MDPI, vol. 10(10), pages 1-24, October.
    18. Hibbeln, Martin & Gürtler, Marc, 2011. "Pitfalls in modeling loss given default of bank loans," Working Papers IF35V1, Technische Universität Braunschweig, Institute of Finance.
    19. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    20. Ruey-Ching Hwang & Huimin Chung & C. K. Chu, 2016. "A Two-Stage Probit Model for Predicting Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 50(3), pages 311-339, December.

    More about this item

    Keywords

    downturn LGD; generalized additive model; Basel II;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucd:wpaper:201224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geary Tech (email available below). General contact details of provider: https://edirc.repec.org/data/geucdie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.