Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models
Author
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Roman Liesenfeld & Jean-Francois Richard, 2006.
"Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 335-360.
- Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
- Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
- Osiewalski, Jacek & Pipien, Mateusz, 2004. "Bayesian comparison of bivariate ARCH-type models for the main exchange rates in Poland," Journal of Econometrics, Elsevier, vol. 123(2), pages 371-391, December.
- Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004.
"Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods,"
Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
- Bauwens, L. & Bos, C.S. & van Dijk, H.K. & van Oest, R.D., 2003. "Adaptive radial-based direction sampling; Some flexible and robust Monte Carlo integration methods," Econometric Institute Research Papers EI 2003-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- BAUWENS, Luc & BOS, Charles S. & VAN DIJK, Herman K. & VAN OEST, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," LIDAM Reprints CORE 1731, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
- Christian Hafner & Helmut Herwartz, 2008.
"Analytical quasi maximum likelihood inference in multivariate volatility models,"
Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(2), pages 219-239, March.
- Hafner, C.M. & Herwartz, H., 2003. "Analytical quasi maximum likelihood inference in multivariate volatility models," Econometric Institute Research Papers EI 2003-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
- Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021.
"Fitting Vast Dimensional Time-Varying Covariance Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
- Robert Engle & Neil Shephard & Kevin Shepphard, 2008. "Fitting vast dimensional time-varying covariance models," OFRC Working Papers Series 2008fe30, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard & Robert F. Engle, 2008. "Fitting vast dimensional time-varying covariance models," Economics Series Working Papers 403, University of Oxford, Department of Economics.
- Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
- Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
- Brent Hudson & Richard Gerlach, 2008. "A Bayesian approach to relaxing parameter restrictions in multivariate GARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 606-627, November.
- P. Dellaportas & I. D. Vrontos, 2007. "Modelling volatility asymmetries: a Bayesian analysis of a class of tree structured multivariate GARCH models," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 503-520, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Burda Martin & Maheu John M., 2013.
"Bayesian adaptively updated Hamiltonian Monte Carlo with an application to high-dimensional BEKK GARCH models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 345-372, September.
- Martin Burda & John M. Maheu, 2012. "Bayesian Adaptively Updated Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models," Working Paper series 46_12, Rimini Centre for Economic Analysis.
- Massimiliano Caporin & Michael McAleer, 2010.
"Ranking Multivariate GARCH Models by Problem Dimension,"
CARF F-Series
CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
- Caporin, M. & McAleer, M.J., 2010. "Ranking multivariate GARCH models by problem dimension," Econometric Institute Research Papers EI 2010-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CIRJE F-Series CIRJE-F-742, CIRJE, Faculty of Economics, University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 10/34, University of Canterbury, Department of Economics and Finance.
- Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
- Massimiliano Caporin & Michael McAleer, 2011.
"Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation,"
Working Papers in Economics
11/23, University of Canterbury, Department of Economics and Finance.
- Michael McAleer & Massimiliano Caporin, 2011. "Ranking Multivariate GARCH Models by Problem Dimension:An Empirical Evaluation," KIER Working Papers 778, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Caporin, Massimiliano & McAleer, Michael, 2014.
"Robust ranking of multivariate GARCH models by problem dimension,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
- Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 12/06, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Documentos de Trabajo del ICAE 2012-06, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Apr 2012.
- Caporin, M. & McAleer, M.J., 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Econometric Institute Research Papers EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Caporin, M. & McAleer, M.J., 2013.
"Ten Things You Should Know About DCC,"
Econometric Institute Research Papers
EI 2013-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things you should know about DCC," Tinbergen Institute Discussion Papers 13-048/III, Tinbergen Institute.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About DCC," KIER Working Papers 854, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About DCC," Working Papers in Economics 13/16, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About DCC," Documentos de Trabajo del ICAE 2013-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer & Jun Yu, 2006.
"Multivariate Stochastic Volatility,"
Microeconomics Working Papers
22058, East Asian Bureau of Economic Research.
- Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility," CIRJE F-Series CIRJE-F-488, CIRJE, Faculty of Economics, University of Tokyo.
- Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
- Barigozzi, Matteo & Hallin, Marc, 2017.
"Generalized dynamic factor models and volatilities: estimation and forecasting,"
Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
- Matteo Barigozzi & Marc Hallin, 2015. "Generalized Dynamic Factor Models and Volatilities: Estimation and Forecasting," Working Papers ECARES ECARES 2015-22, ULB -- Universite Libre de Bruxelles.
- Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities estimation and forecasting," LSE Research Online Documents on Economics 67455, London School of Economics and Political Science, LSE Library.
- Massimiliano Caporin & Michael McAleer, 2013.
"Ten Things You Should Know about the Dynamic Conditional Correlation Representation,"
Econometrics, MDPI, vol. 1(1), pages 1-12, June.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things you should know about the Dynamic Conditional Correlation Representation," Tinbergen Institute Discussion Papers 13-078/III, Tinbergen Institute.
- Caporin, M. & McAleer, M.J., 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Econometric Institute Research Papers EI 2013-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Documentos de Trabajo del ICAE 2013-21, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Working Papers in Economics 13/21, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," KIER Working Papers 870, Kyoto University, Institute of Economic Research.
- Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
- Jacek Osiewalski & Mateusz Pipień, 2005. "Bayesian Analysis of Dynamic Conditional Correlation Using Bivariate GARCH Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 13, pages 213-227, University of Lodz.
- Christoffersen, Peter & Errunza, Vihang & Jacobs, Kris & Jin, Xisong, 2014.
"Correlation dynamics and international diversification benefits,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 807-824.
- Peter Christoffersen & Vihang R. Errunza & Kris Jacobs & Xisong Jin, 2013. "Correlation Dynamics and International Diversification Benefits," CREATES Research Papers 2013-49, Department of Economics and Business Economics, Aarhus University.
- Massimiliano Caporin & Michael McAleer, 2009.
"Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models,"
CARF F-Series
CARF-F-156, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," Documentos de Trabajo del ICAE 2009-04, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CIRJE F-Series CIRJE-F-638, CIRJE, Faculty of Economics, University of Tokyo.
- Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017.
"A dynamic component model for forecasting high-dimensional realized covariance matrices,"
Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Discussion Papers CORE 2016001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2020. "A Dynamic Component Model for Forecasting High-Dimensional Realized Covariances Matrices," Working Papers 3_234, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, revised Jul 2020.
- Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI & Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," LIDAM Reprints CORE 2812, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Morana, Claudio, 2019.
"Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices,"
Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
- Claudio, Morana, 2018. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Working Papers 382, University of Milano-Bicocca, Department of Economics, revised 04 Jun 2018.
- Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013.
"Seleção de carteiras utilizando o modelo Fama-French-Carhart,"
Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
- Guilherme Valle Moura & João Frois Caldeira & André Santos, 2014. "Seleção De Carteiras Utilizando O Modelofama-French-Carhart," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 117, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Varneskov, Rasmus & Voev, Valeri, 2013.
"The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts,"
Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
- Rasmus Tangsgaard Varneskov & Valeri Voev, 2010. "The Role of Realized Ex-post Covariance Measures and Dynamic Model Choice on the Quality of Covariance Forecasts," CREATES Research Papers 2010-45, Department of Economics and Business Economics, Aarhus University.
- Massimiliano Caporin & Michael McAleer, 2012.
"Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models,"
Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
- Massimiliano Caporin & Michael McAleer, 2010. "Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models," KIER Working Papers 738, Kyoto University, Institute of Economic Research.
- Caporin, M. & McAleer, M.J., 2010. "Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models," Econometric Institute Research Papers EI 2010-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimiliano Caporin & Michael McAleer, 2010. "Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models," CIRJE F-Series CIRJE-F-713, CIRJE, Faculty of Economics, University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2010. "Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models," Working Papers in Economics 10/06, University of Canterbury, Department of Economics and Finance.
- M. Raddant & F. Wagner, 2022.
"Multivariate GARCH with dynamic beta,"
The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1324-1343, October.
- Matthias Raddant & Friedrich Wagner, 2016. "Multivariate Garch with dynamic beta," Papers 1609.07051, arXiv.org, revised Nov 2019.
More about this item
Keywords
High-dimensional joint sampling; Markov chain Monte Carlo; Multivariate GARCH;All these keywords.
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2011-07-13 (Econometrics)
- NEP-ETS-2011-07-13 (Econometric Time Series)
- NEP-ORE-2011-07-13 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-438. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePEc Maintainer (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.