[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20210024.html
   My bibliography  Save this paper

Balanced Externalities and the Proportional Allocation of Nonseparable Contributions

Author

Listed:
  • Rene van den Brink

    (Vrije Universiteit Amsterdam)

  • Youngsub Chun

    (Seoul National University)

  • Yukihiko Funaki

    (Waseda University)

  • Zhengxing Zou

    (Beijing Jiaotong University)

Abstract
In this paper, we study the implications of extending the balanced cost reduction property from queueing problems to general games. As a direct translation of the balanced cost reduction property, the axiom of balanced externalities for solutions of games, requires that the payoff of any player is equal to the total externality she inflicts on the other players with her presence. We show that this axiom and efficiency together characterize the Shapley value for 2-additive games. However, extending this axiom in a straightfoward way to general games is incompatible with efficiency. Keeping as close as possible to the idea behind balanced externalities, we weaken this axiom by requiring that every player's payoff is the same fraction of its total externality inflicted on the other players. This weakening, which we call weak balanced externalities, turns out to be compatible with efficiency. More specifically, the unique efficient solution that satisfies this weaker property is the proportional allocation of nonseparable contribution (PANSC) value, which allocates the total worth proportional to the separable costs of the players. We also provide characterizations of the PANSC value using a reduced game consistency axiom.

Suggested Citation

  • Rene van den Brink & Youngsub Chun & Yukihiko Funaki & Zhengxing Zou, 2021. "Balanced Externalities and the Proportional Allocation of Nonseparable Contributions," Tinbergen Institute Discussion Papers 21-024/II, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20210024
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/21024.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moulin, Herve, 1985. "The separability axiom and equal-sharing methods," Journal of Economic Theory, Elsevier, vol. 36(1), pages 120-148, June.
    2. René Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2016. "Consistency, population solidarity, and egalitarian solutions for TU-games," Theory and Decision, Springer, vol. 81(3), pages 427-447, September.
    3. Tijs, S.H. & Driessen, T.S.H., 1986. "Game theory and cost allocation problems," Other publications TiSEM 376c24c5-c95d-4d29-96b6-4, Tilburg University, School of Economics and Management.
    4. A. van den Nouweland & P. Borm & W. van Golstein Brouwers & R. Groot Bruinderink & S. Tijs, 1996. "A Game Theoretic Approach to Problems in Telecommunication," Management Science, INFORMS, vol. 42(2), pages 294-303, February.
    5. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    6. Otten, G.J.M., 1993. "Characterizations of a Game Theoretical Cost Allocation Method," Other publications TiSEM 18a0262e-a6d3-4bd9-bdb0-6, Tilburg University, School of Economics and Management.
    7. Tijs, S.H., 1987. "An axiomatization of the ô-value," Other publications TiSEM 5536ac66-86f3-49fb-9e7d-2, Tilburg University, School of Economics and Management.
    8. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    9. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    11. Lemaire, Jean, 1984. "An Application of Game Theory: Cost Allocation," ASTIN Bulletin, Cambridge University Press, vol. 14(1), pages 61-81, April.
    12. Otten, G.J., 1993. "Characterizations of a Game Theoretical Cost Allocation Methods," Papers 9337, Tilburg - Center for Economic Research.
    13. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    14. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    15. René Brink & Youngsub Chun, 2012. "Balanced consistency and balanced cost reduction for sequencing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 519-529, March.
    16. Otten, G.J.M., 1993. "Characterizations of a Game Theoretical Cost Allocation Method," Discussion Paper 1993-37, Tilburg University, Center for Economic Research.
    17. S. H. Tijs & T. S. H. Driessen, 1986. "Game Theory and Cost Allocation Problems," Management Science, INFORMS, vol. 32(8), pages 1015-1028, August.
    18. Tijs, Stef H., 1987. "An axiomatization of the [tau]-value," Mathematical Social Sciences, Elsevier, vol. 13(2), pages 177-181, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Brink, René & Chun, Youngsub & Funaki, Yukihiko & Zou, Zhengxing, 2023. "Balanced externalities and the proportional allocation of nonseparable contributions," European Journal of Operational Research, Elsevier, vol. 307(2), pages 975-983.
    2. Zhengxing Zou & Rene van den Brink, 2020. "Sharing the Surplus and Proportional Values," Tinbergen Institute Discussion Papers 20-014/II, Tinbergen Institute.
    3. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2019. "Recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-23, April.
    4. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
    5. Zhengxing Zou & René Brink & Yukihiko Funaki, 2022. "Sharing the surplus and proportional values," Theory and Decision, Springer, vol. 93(1), pages 185-217, July.
    6. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2020. "Allocating extra revenues from broadcasting sports leagues," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 65-73.
    7. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    8. Zou, Zhengxing & van den Brink, René & Funaki, Yukihiko, 2021. "Compromising between the proportional and equal division values," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    9. Sylvain Béal & André Casajus & Frank Huettner & Eric Rémila & Philippe Solal, 2016. "Characterizations of weighted and equal division values," Theory and Decision, Springer, vol. 80(4), pages 649-667, April.
    10. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    11. Zhengxing Zou & Rene van den Brink & Yukihiko Funaki, 2020. "Compromising between the proportional and equal division values: axiomatization, consistency and implementation," Tinbergen Institute Discussion Papers 20-054/II, Tinbergen Institute.
    12. Pedro Calleja & Francesc Llerena, 2019. "Path monotonicity, consistency and axiomatizations of some weighted solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(1), pages 287-310, March.
    13. Gustavo Bergantiños & Juan D. Moreno-Ternero, 2022. "On the axiomatic approach to sharing the revenues from broadcasting sports leagues," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 58(2), pages 321-347, February.
    14. Frisk, M. & Göthe-Lundgren, M. & Jörnsten, K. & Rönnqvist, M., 2010. "Cost allocation in collaborative forest transportation," European Journal of Operational Research, Elsevier, vol. 205(2), pages 448-458, September.
    15. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    16. M. Fiestras-Janeiro & Ignacio García-Jurado & Manuel Mosquera, 2011. "Cooperative games and cost allocation problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-22, July.
    17. René Van Den Brink & Agnieszka Rusinowska, 2023. "Degree Centrality, von Neumann-Morgenstern Expected Utility and Externalities in Networks," Documents de travail du Centre d'Economie de la Sorbonne 23012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Calleja, Pere & Llerena Garrés, Francesc, 2016. "Consistency distinguishes the (weighted) Shapley value, the (weighted) surplus division value and the prenucleolus," Working Papers 2072/266577, Universitat Rovira i Virgili, Department of Economics.
    19. Kar, Anirban & Mitra, Manipushpak & Mutuswami, Suresh, 2009. "On the coincidence of the prenucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 16-25, January.
    20. Julio González-Díaz & Estela Sánchez-Rodríguez, 2014. "Understanding the coincidence of allocation rules: symmetry and orthogonality in TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 821-843, November.

    More about this item

    Keywords

    Cooperative game; balanced externalities; proportional allocation of nonseparable contributions; consistency;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20210024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.