Bezirgen Veliyev
Personal Details
First Name: | Bezirgen |
Middle Name: | |
Last Name: | Veliyev |
Suffix: | |
RePEc Short-ID: | pve315 |
[This author has chosen not to make the email address public] | |
https://sites.google.com/site/bezirgenveliyev | |
Affiliation
Center for Research in Econometric Analysis of Time Series (CREATES)
Institut for Økonomi
Aarhus Universitet
Aarhus, Denmarkhttp://www.creates.au.dk/
RePEc:edi:creaudk (more details at EDIRC)
Research output
Jump to: Working papers ArticlesWorking papers
- Christensen, Kim & Timmermann, Allan & Veliyev, Bezirgen, 2023. "Warp Speed Price Moves: Jumps after Earnings Announcements," CEPR Discussion Papers 18032, C.E.P.R. Discussion Papers.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021.
"A machine learning approach to volatility forecasting,"
CREATES Research Papers
2021-03, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
- Bent Jesper Christensen & Mads Markvart Kjær & Bezirgen Veliyev, 2021.
"The incremental information in the yield curve about future interest rate risk,"
CREATES Research Papers
2021-11, Department of Economics and Business Economics, Aarhus University.
- Christensen, Bent Jesper & Kjær, Mads Markvart & Veliyev, Bezirgen, 2023. "The incremental information in the yield curve about future interest rate risk," Journal of Banking & Finance, Elsevier, vol. 155(C).
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020.
"A GMM approach to estimate the roughness of stochastic volatility,"
Papers
2010.04610, arXiv.org, revised Apr 2022.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020.
"Treatment recommendation with distributional targets,"
Papers
2005.09717, arXiv.org, revised Apr 2022.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Functional Sequential Treatment Allocation with Covariates," Papers 2001.10996, arXiv.org.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "Roughness in spot variance? A GMM approach for estimation of fractional log-normal stochastic volatility models using realized measures," CREATES Research Papers 2020-12, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Martin Thyrsgaard & Bezirgen Veliyev, 2018.
"The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing,"
CREATES Research Papers
2018-19, Department of Economics and Business Economics, Aarhus University.
- Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2018.
"Functional Sequential Treatment Allocation,"
Papers
1812.09408, arXiv.org, revised Aug 2020.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2018. "Edgeworth expansion for Euler approximation of continuous diffusion processes," CREATES Research Papers 2018-28, Department of Economics and Business Economics, Aarhus University.
- Ulrich Hounyo & Bezirgen Veliyev, 2015.
"Validity of Edgeworth expansions for realized volatility estimators,"
CREATES Research Papers
2015-21, Department of Economics and Business Economics, Aarhus University.
- Ulrich Hounyo & Bezirgen Veliyev, 2016. "Validity of Edgeworth expansions for realized volatility estimators," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015.
"Inference from high-frequency data: A subsampling approach,"
CREATES Research Papers
2015-45, Department of Economics and Business Economics, Aarhus University.
- Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015.
"Edgeworth expansion for the pre-averaging estimator,"
CREATES Research Papers
2015-60, Department of Economics and Business Economics, Aarhus University.
- Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017. "Edgeworth expansion for the pre-averaging estimator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," Papers 1512.04716, arXiv.org.
- Christian Bayer & Bezirgen Veliyev, 2012.
"Utility Maximization in a Binomial Model with transaction costs: a Duality Approach Based on the Shadow Price Process,"
Papers
1209.5175, arXiv.org.
- Christian Bayer & Bezirgen Veliyev, 2014. "Utility Maximization In A Binomial Model With Transaction Costs: A Duality Approach Based On The Shadow Price Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-27.
- Mathias Beiglbock & Walter Schachermayer & Bezirgen Veliyev, 2010. "A Direct Proof of the Bichteler--Dellacherie Theorem and Connections to Arbitrage," Papers 1004.5559, arXiv.org.
Articles
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023.
"A Machine Learning Approach to Volatility Forecasting,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023.
"A GMM approach to estimate the roughness of stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "A GMM approach to estimate the roughness of stochastic volatility," Papers 2010.04610, arXiv.org, revised Apr 2022.
- Christensen, Bent Jesper & Kjær, Mads Markvart & Veliyev, Bezirgen, 2023.
"The incremental information in the yield curve about future interest rate risk,"
Journal of Banking & Finance, Elsevier, vol. 155(C).
- Bent Jesper Christensen & Mads Markvart Kjær & Bezirgen Veliyev, 2021. "The incremental information in the yield curve about future interest rate risk," CREATES Research Papers 2021-11, Department of Economics and Business Economics, Aarhus University.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022.
"Functional Sequential Treatment Allocation,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2018. "Functional Sequential Treatment Allocation," Papers 1812.09408, arXiv.org, revised Aug 2020.
- Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019.
"The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
- Kim Christensen & Martin Thyrsgaard & Bezirgen Veliyev, 2018. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," CREATES Research Papers 2018-19, Department of Economics and Business Economics, Aarhus University.
- Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017.
"Inference from high-frequency data: A subsampling approach,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
- Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
- Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017.
"Edgeworth expansion for the pre-averaging estimator,"
Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," Papers 1512.04716, arXiv.org.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," CREATES Research Papers 2015-60, Department of Economics and Business Economics, Aarhus University.
- Ulrich Hounyo & Bezirgen Veliyev, 2016.
"Validity of Edgeworth expansions for realized volatility estimators,"
Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Ulrich Hounyo & Bezirgen Veliyev, 2015. "Validity of Edgeworth expansions for realized volatility estimators," CREATES Research Papers 2015-21, Department of Economics and Business Economics, Aarhus University.
- Christian Bayer & Bezirgen Veliyev, 2014.
"Utility Maximization In A Binomial Model With Transaction Costs: A Duality Approach Based On The Shadow Price Process,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-27.
- Christian Bayer & Bezirgen Veliyev, 2012. "Utility Maximization in a Binomial Model with transaction costs: a Duality Approach Based on the Shadow Price Process," Papers 1209.5175, arXiv.org.
- Beiglböck, Mathias & Schachermayer, Walter & Veliyev, Bezirgen, 2012. "A short proof of the Doob–Meyer theorem," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1204-1209.
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Blog mentions
As found by EconAcademics.org, the blog aggregator for Economics research:- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021.
"A machine learning approach to volatility forecasting,"
CREATES Research Papers
2021-03, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
Mentioned in:
- Machine Learning for Realized Volatility Forecasting
by Francis Diebold in No Hesitations on 2021-02-01 12:16:00
Working papers
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021.
"A machine learning approach to volatility forecasting,"
CREATES Research Papers
2021-03, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
Cited by:
- M. Shabani & M. Magris & George Tzagkarakis & J. Kanniainen & A. Iosifidis, 2023. "Predicting the state of synchronization of financial time series using cross recurrence plots," Post-Print hal-04415269, HAL.
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Rafael Reisenhofer & Xandro Bayer & Nikolaus Hautsch, 2022.
"HARNet: A Convolutional Neural Network for Realized Volatility Forecasting,"
Papers
2205.07719, arXiv.org.
- Reisenhofer, Rafael & Bayer, Xandro & Hautsch, Nikolaus, 2022. "HARNet: A convolutional neural network for realized volatility forecasting," CFS Working Paper Series 680, Center for Financial Studies (CFS).
- Chao Zhang & Yihuang Zhang & Mihai Cucuringu & Zhongmin Qian, 2022. "Volatility forecasting with machine learning and intraday commonality," Papers 2202.08962, arXiv.org, revised Feb 2023.
- Francesco Audrino & Jonathan Chassot, 2024. "HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning," Papers 2406.08041, arXiv.org.
- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Robert Stok & Paul Bilokon, 2023. "From Deep Filtering to Deep Econometrics," Papers 2311.06256, arXiv.org.
- Liao, Cunfei & Ma, Tian, 2024. "From fundamental signals to stock volatility: A machine learning approach," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
- Kaczmarek, Tomasz & Będowska-Sójka, Barbara & Grobelny, Przemysław & Perez, Katarzyna, 2022. "False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network," Research in International Business and Finance, Elsevier, vol. 60(C).
- Guangying Liu & Ziyan Zhuang & Min Wang, 2024. "Forecasting the high‐frequency volatility based on the LSTM‐HIT model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1356-1373, August.
- Anubha Goel & Puneet Pasricha & Juho Kanniainen, 2024. "Time-Series Foundation Model for Value-at-Risk," Papers 2410.11773, arXiv.org, revised Oct 2024.
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Timothé Gronier & William Maréchal & Christophe Geissler & Stéphane Gibout, 2022. "Usage of GAMS-Based Digital Twins and Clustering to Improve Energetic Systems Control," Energies, MDPI, vol. 16(1), pages 1-17, December.
- Lyócsa, Štefan & Todorova, Neda, 2024. "Forecasting of clean energy market volatility: The role of oil and the technology sector," Energy Economics, Elsevier, vol. 132(C).
- Jiawen Luo & Oguzhan Cepni & Riza Demirer & Rangan Gupta, 2022. "Forecasting Multivariate Volatilities with Exogenous Predictors: An Application to Industry Diversification Strategies," Working Papers 202258, University of Pretoria, Department of Economics.
- Niu, Zibo & Demirer, Riza & Suleman, Muhammad Tahir & Zhang, Hongwei & Zhu, Xuehong, 2024. "Do industries predict stock market volatility? Evidence from machine learning models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
- Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020.
"A GMM approach to estimate the roughness of stochastic volatility,"
Papers
2010.04610, arXiv.org, revised Apr 2022.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
Cited by:
- Jia Li & Peter C. B. Phillips & Shuping Shi & Jun Yu, 2022.
"Weak Identification of Long Memory with Implications for Inference,"
Cowles Foundation Discussion Papers
2334, Cowles Foundation for Research in Economics, Yale University.
- Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
- Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1221-1258, September.
- Kim Christensen & Ulrich Hounyo & Zhi Liu, 2024. "A nonparametric test for diurnal variation in spot correlation processes," Papers 2408.02757, arXiv.org.
- Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.
- Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Shuping Shi & Jun Yu, 2023. "Volatility Puzzle: Long Memory or Antipersistency," Management Science, INFORMS, vol. 69(7), pages 3861-3883, July.
- Xiyue Han & Alexander Schied, 2023. "Estimating the roughness exponent of stochastic volatility from discrete observations of the integrated variance," Papers 2307.02582, arXiv.org, revised Nov 2024.
- Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org.
- Alexandre Pannier, 2023. "Path-dependent PDEs for volatility derivatives," Papers 2311.08289, arXiv.org, revised Jan 2024.
- Mikkel Bennedsen & Kim Christensen & Peter Christensen, 2024. "Composite likelihood estimation of stationary Gaussian processes with a view toward stochastic volatility," Papers 2403.12653, arXiv.org.
- Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
- Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Central limit theorems," Papers 2210.01216, arXiv.org, revised Jun 2024.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
- Peter Christensen, 2024. "Roughness Signature Functions," Papers 2401.02819, arXiv.org.
- Saad Mouti, 2023. "Rough volatility: evidence from range volatility estimators," Papers 2312.01426, arXiv.org, revised Sep 2024.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020.
"Treatment recommendation with distributional targets,"
Papers
2005.09717, arXiv.org, revised Apr 2022.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
Cited by:
- Claudio Cardoso Flores & Marcelo Cunha Medeiros, 2020. "Online Action Learning in High Dimensions: A Conservative Perspective," Papers 2009.13961, arXiv.org, revised Mar 2024.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020.
"Functional Sequential Treatment Allocation with Covariates,"
Papers
2001.10996, arXiv.org.
Cited by:
- Keisuke Hirano & Jack R. Porter, 2023. "Asymptotic Representations for Sequential Decisions, Adaptive Experiments, and Batched Bandits," Papers 2302.03117, arXiv.org.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020.
"Roughness in spot variance? A GMM approach for estimation of fractional log-normal stochastic volatility models using realized measures,"
CREATES Research Papers
2020-12, Department of Economics and Business Economics, Aarhus University.
Cited by:
- Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
- Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
- Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
- Wu, Peng & Muzy, Jean-François & Bacry, Emmanuel, 2022. "From rough to multifractal volatility: The log S-fBM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Kim Christensen & Martin Thyrsgaard & Bezirgen Veliyev, 2018.
"The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing,"
CREATES Research Papers
2018-19, Department of Economics and Business Economics, Aarhus University.
- Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
Cited by:
- Viktor Todorov & Yang Zhang, 2022. "Information gains from using short‐dated options for measuring and forecasting volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 368-391, March.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021.
"A machine learning approach to volatility forecasting,"
CREATES Research Papers
2021-03, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023.
"A GMM approach to estimate the roughness of stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "A GMM approach to estimate the roughness of stochastic volatility," Papers 2010.04610, arXiv.org, revised Apr 2022.
- Sigurd Emil Rømer & Rolf Poulsen, 2020. "How Does the Volatility of Volatility Depend on Volatility?," Risks, MDPI, vol. 8(2), pages 1-18, June.
- Yinfen Tang & Tao Su & Zhiyuan Zhang, 2022. "Distribution-free specification test for volatility function based on high-frequency data with microstructure noise," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 977-1022, November.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2018.
"Functional Sequential Treatment Allocation,"
Papers
1812.09408, arXiv.org, revised Aug 2020.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
Cited by:
- Maximilian Kasy & Anja Sautmann, 2019.
"Adaptive Treatment Assignment in Experiments for Policy Choice,"
CESifo Working Paper Series
7778, CESifo.
- Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
- Keisuke Hirano & Jack R. Porter, 2023. "Asymptotic Representations for Sequential Decisions, Adaptive Experiments, and Batched Bandits," Papers 2302.03117, arXiv.org.
- Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Jeff Rowley, 2024. "Bandit algorithms for policy learning: methods, implementation, and welfare-performance," The Japanese Economic Review, Springer, vol. 75(3), pages 407-447, July.
- Claudio Cardoso Flores & Marcelo Cunha Medeiros, 2020. "Online Action Learning in High Dimensions: A Conservative Perspective," Papers 2009.13961, arXiv.org, revised Mar 2024.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Functional Sequential Treatment Allocation with Covariates," Papers 2001.10996, arXiv.org.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2018.
"Edgeworth expansion for Euler approximation of continuous diffusion processes,"
CREATES Research Papers
2018-28, Department of Economics and Business Economics, Aarhus University.
Cited by:
- Ciprian A. Tudor & Nakahiro Yoshida, 2020. "Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 435-463, July.
- Elisa Alòs & Masaaki Fukasawa, 2021. "The asymptotic expansion of the regular discretization error of Itô integrals," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 323-365, January.
- Ulrich Hounyo & Bezirgen Veliyev, 2015.
"Validity of Edgeworth expansions for realized volatility estimators,"
CREATES Research Papers
2015-21, Department of Economics and Business Economics, Aarhus University.
- Ulrich Hounyo & Bezirgen Veliyev, 2016. "Validity of Edgeworth expansions for realized volatility estimators," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
Cited by:
- He, Lidan & Liu, Qiang & Liu, Zhi, 2020. "Edgeworth corrections for spot volatility estimator," Statistics & Probability Letters, Elsevier, vol. 164(C).
- Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
- Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
- Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017.
"Edgeworth expansion for the pre-averaging estimator,"
Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," Papers 1512.04716, arXiv.org.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," CREATES Research Papers 2015-60, Department of Economics and Business Economics, Aarhus University.
- Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
- Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015.
"Inference from high-frequency data: A subsampling approach,"
CREATES Research Papers
2015-45, Department of Economics and Business Economics, Aarhus University.
- Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
Cited by:
- Takaki Hayashi & Yuta Koike, 2017. "Multi-scale analysis of lead-lag relationships in high-frequency financial markets," Papers 1708.03992, arXiv.org, revised May 2020.
- Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
- Mathias Vetter, 2021. "A universal approach to estimate the conditional variance in semimartingale limit theorems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1089-1125, December.
- Fabian Mies & Ansgar Steland, 2019. "Nonparametric Gaussian inference for stable processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 525-555, October.
- Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2023. "High-dimensional estimation of quadratic variation based on penalized realized variance," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 331-359, July.
- Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
- Wang, Jiazhen & Jiang, Yuexiang & Zhu, Yanjian & Yu, Jing, 2020. "Prediction of volatility based on realized-GARCH-kernel-type models: Evidence from China and the U.S," Economic Modelling, Elsevier, vol. 91(C), pages 428-444.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015.
"Edgeworth expansion for the pre-averaging estimator,"
CREATES Research Papers
2015-60, Department of Economics and Business Economics, Aarhus University.
- Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017. "Edgeworth expansion for the pre-averaging estimator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," Papers 1512.04716, arXiv.org.
Cited by:
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2018. "Edgeworth expansion for Euler approximation of continuous diffusion processes," CREATES Research Papers 2018-28, Department of Economics and Business Economics, Aarhus University.
- Yamagishi, Hayate & Yoshida, Nakahiro, 2023. "Order estimate of functionals related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 490-543.
- Ciprian A. Tudor & Nakahiro Yoshida, 2020. "Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 435-463, July.
- Yoshida, Nakahiro, 2023. "Asymptotic expansion and estimates of Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 176-248.
- Tudor, Ciprian A. & Yoshida, Nakahiro, 2023. "High order asymptotic expansion for Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 443-492.
- Mathias Beiglbock & Walter Schachermayer & Bezirgen Veliyev, 2010.
"A Direct Proof of the Bichteler--Dellacherie Theorem and Connections to Arbitrage,"
Papers
1004.5559, arXiv.org.
Cited by:
- Christoph Kuhn & Bjorn Ulbricht, 2013. "Modeling capital gains taxes for trading strategies of infinite variation," Papers 1309.7368, arXiv.org, revised Jun 2015.
- Kardaras, Constantinos, 2013. "On the closure in the Emery topology of semimartingale wealth-process sets," LSE Research Online Documents on Economics 44996, London School of Economics and Political Science, LSE Library.
- Dániel Ágoston Bálint & Martin Schweizer, 2018. "Making No-Arbitrage Discounting-Invariant: A New FTAP Beyond NFLVR and NUPBR," Swiss Finance Institute Research Paper Series 18-23, Swiss Finance Institute, revised Mar 2018.
- Constantinos Kardaras, 2011. "On the closure in the Emery topology of semimartingale wealth-process sets," Papers 1108.0945, arXiv.org, revised Jul 2013.
- Dániel Ágoston Bálint & Martin Schweizer, 2019. "Properly Discounted Asset Prices Are Semimartingales," Swiss Finance Institute Research Paper Series 19-53, Swiss Finance Institute.
- Christoph Kuhn & Alexander Molitor, 2020. "Semimartingale price systems in models with transaction costs beyond efficient friction," Papers 2001.03190, arXiv.org, revised Aug 2021.
- Vladimir Vovk, 2012. "Continuous-time trading and the emergence of probability," Finance and Stochastics, Springer, vol. 16(4), pages 561-609, October.
Articles
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
See citations under working paper version above.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023.
"A Machine Learning Approach to Volatility Forecasting,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
See citations under working paper version above.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
- Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023.
"A GMM approach to estimate the roughness of stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
See citations under working paper version above.
- Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "A GMM approach to estimate the roughness of stochastic volatility," Papers 2010.04610, arXiv.org, revised Apr 2022.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022.
"Functional Sequential Treatment Allocation,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
See citations under working paper version above.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2018. "Functional Sequential Treatment Allocation," Papers 1812.09408, arXiv.org, revised Aug 2020.
- Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019.
"The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
See citations under working paper version above.
- Kim Christensen & Martin Thyrsgaard & Bezirgen Veliyev, 2018. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," CREATES Research Papers 2018-19, Department of Economics and Business Economics, Aarhus University.
- Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017.
"Inference from high-frequency data: A subsampling approach,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
See citations under working paper version above.
- Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
- Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017.
"Edgeworth expansion for the pre-averaging estimator,"
Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
See citations under working paper version above.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," Papers 1512.04716, arXiv.org.
- Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," CREATES Research Papers 2015-60, Department of Economics and Business Economics, Aarhus University.
- Ulrich Hounyo & Bezirgen Veliyev, 2016.
"Validity of Edgeworth expansions for realized volatility estimators,"
Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
See citations under working paper version above.
- Ulrich Hounyo & Bezirgen Veliyev, 2015. "Validity of Edgeworth expansions for realized volatility estimators," CREATES Research Papers 2015-21, Department of Economics and Business Economics, Aarhus University.
- Beiglböck, Mathias & Schachermayer, Walter & Veliyev, Bezirgen, 2012.
"A short proof of the Doob–Meyer theorem,"
Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1204-1209.
Cited by:
- Neufeld, Ariel & Nutz, Marcel, 2014. "Measurability of semimartingale characteristics with respect to the probability law," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3819-3845.
- Oleksii Mostovyi, 2015. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Finance and Stochastics, Springer, vol. 19(1), pages 135-159, January.
- Oleksii Mostovyi, 2011. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Papers 1107.5852, arXiv.org, revised Jul 2012.
- Christoph Kuhn, 2023. "The fundamental theorem of asset pricing with and without transaction costs," Papers 2307.00571, arXiv.org, revised Aug 2024.
- Beiglböck, M. & Siorpaes, P., 2014. "Riemann-integration and a new proof of the Bichteler–Dellacherie theorem," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1226-1235.
More information
Research fields, statistics, top rankings, if available.Statistics
Access and download statistics for all items
Co-authorship network on CollEc
NEP Fields
NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 8 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.- NEP-ECM: Econometrics (4) 2015-05-16 2015-10-04 2015-12-20 2020-11-02
- NEP-ETS: Econometric Time Series (3) 2015-05-16 2015-10-04 2020-11-02
- NEP-FOR: Forecasting (2) 2021-01-25 2021-07-12
- NEP-ORE: Operations Research (2) 2021-01-25 2021-07-12
- NEP-BIG: Big Data (1) 2021-01-25
- NEP-CMP: Computational Economics (1) 2021-01-25
- NEP-EXP: Experimental Economics (1) 2020-06-29
- NEP-ICT: Information and Communication Technologies (1) 2015-10-04
- NEP-MAC: Macroeconomics (1) 2021-07-12
- NEP-MIC: Microeconomics (1) 2012-10-06
- NEP-MST: Market Microstructure (1) 2015-05-16
- NEP-RMG: Risk Management (1) 2021-07-12
- NEP-UPT: Utility Models and Prospect Theory (1) 2021-07-12
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.
To update listings or check citations waiting for approval, Bezirgen Veliyev should log into the RePEc Author Service.
To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.
To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.
Please note that most corrections can take a couple of weeks to filter through the various RePEc services.