[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/b/zbw/rwipro/145964.html
   My bibliography  Save this book

Empirische Messung der Aufkommenselastizität der veranlagten Einkommensteuer in Relation zu den Unternehmens- und Vermögenseinkommen: (Forschungsvorhaben fe 7/15). Endbericht für das Bundesministerium der Finanzen

Author

Listed:
  • Gebhardt, Heinz
  • Breidenbach, Philipp
  • Jäger, Philipp
  • van Deuverden, Kristina
  • Boysen-Hogrefe, Jens
  • Breuer, Christian
  • Zeddies, Götz
Abstract
In dieser Studie wird der Zusammenhang zwischen dem Aufkommen der veranlagten Einkommensteuer und den Unternehmens‐ und Vermögenseinkommen (UVE) bzw. einzelnen Unteraggregaten der UVE analysiert, um die methodischen und empirischen Grundlagen für die Prognose des Einkommensteueraufkommens zu verbessern. Dazu wird zunächst die vom Arbeitskreis Steuerschätzungen (AKS) als Fortschreibungsindikator für die veranlagte Einkommensteuer zugrunde gelegte Größe der UVE genauer betrachtet, sodann werden methodische und empirische Untersuchungen zur Ableitung der Aufkommenselastizität der veranlagten Einkommensteuer in Relation zu den UVE bzw. zu einzelnen Unteraggregaten der UVE vorgestellt. [...]

Suggested Citation

  • Gebhardt, Heinz & Breidenbach, Philipp & Jäger, Philipp & van Deuverden, Kristina & Boysen-Hogrefe, Jens & Breuer, Christian & Zeddies, Götz, 2016. "Empirische Messung der Aufkommenselastizität der veranlagten Einkommensteuer in Relation zu den Unternehmens- und Vermögenseinkommen: (Forschungsvorhaben fe 7/15). Endbericht für das Bundesministerium," RWI Projektberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, number 145964.
  • Handle: RePEc:zbw:rwipro:145964
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/145964/1/865639027.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Bechara, Peggy & Kasten, Tanja & Schaffner, Sandra, 2015. "Dokumentation des RWI-Einkommensteuer-Mikrosimulationsmodells (EMSIM)," RWI Materialien 86, RWI - Leibniz-Institut für Wirtschaftsforschung.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    2. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    3. R Burger & S du Plessis, 2011. "Examining the Robustness of Competing Explanations of Slow Growth in African Countries," Studies in Economics and Econometrics, Taylor & Francis Journals, vol. 35(3), pages 21-47, December.
    4. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    5. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    6. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    7. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    8. Carlos A. Medel, 2015. "Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 30(1), pages 57-72, Abril.
    9. Cáceres, Neila & Malone, Samuel W., 2015. "Optimal Weather Conditions, Economic Growth, and Political Transitions," World Development, Elsevier, vol. 66(C), pages 16-30.
    10. Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
    11. Benjamin Wirth & Andreas Mense, 2014. "Flat Prices, Cell Phone Base Stations, and Network Structure," ERSA conference papers ersa14p1552, European Regional Science Association.
    12. Muellbauer, John & Nunziata, Luca, 2001. "Credit, the Stock Market and Oil: Forecasting US GDP," CEPR Discussion Papers 2906, C.E.P.R. Discussion Papers.
    13. Dovern, Jonas, 2006. "Predicting GDP components: do leading indicators increase predictability?," Kiel Advanced Studies Working Papers 436, Kiel Institute for the World Economy (IfW Kiel).
    14. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    15. Søren Johansen & David F. Hendry & Carlos Santos, 2007. "Selecting a Regression Saturated by Indicators," CREATES Research Papers 2007-36, Department of Economics and Business Economics, Aarhus University.
    16. Hayo, Bernd & Vollan, Björn, 2012. "Group interaction, heterogeneity, rules, and co-operative behaviour: Evidence from a common-pool resource experiment in South Africa and Namibia," Journal of Economic Behavior & Organization, Elsevier, vol. 81(1), pages 9-28.
    17. Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    18. Allan Webster & Sangeeta Khorana & Francesco Pastore, 2021. "The labour market impact of COVID-19: early evidence for a sample of enterprises from Southern Europe," International Journal of Manpower, Emerald Group Publishing Limited, vol. 43(4), pages 1054-1082, November.
    19. Sule Akkoyunlu, 2010. "Can trade, aid, foreign direct investments and remittances curb migration from Turkey?," Migration Letters, Migration Letters, vol. 7(2), pages 144-158, October.
    20. Jennifer Castle & David Hendry, 2010. "Automatic Selection for Non-linear Models," Economics Series Working Papers 473, University of Oxford, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:rwipro:145964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/rwiesde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.