[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i2p705-719.html
   My bibliography  Save this article

Impact of Urbanization on the Hydrology of Ganga Basin (India)

Author

Listed:
  • Anil Misra
Abstract
Large scale emigrations from rural areas to urban areas and population growth have been uninterrupted and accelerating phenomena in parts of Ganga basin, where urbanization is increasing at an unprecedented rate. Urban agglomeration is causing radical changes in groundwater recharge and modifying the existing mechanisms. Majority of the cities are sited on unconfined or semi confined aquifers depend upon river water and groundwater for most of their water supply and disposal of most of their liquid effluents and solid residues to the rivers and ground. There has also been an inevitable rise in waste production. Drainage of surface water has been disrupted as the small natural channels and low lying areas have been in filled, often with municipal waste. Total water potential of the Ganga basin including surface water potential and ground water potential is around 525.02 km 3 and 170.00 km 3 respectively. Basin supports approximately 42% of the total population in India. Water tables are declining at approximately an average of 0.20 m per year in many parts of the basin and there is a trend of deteriorating groundwater quality. The demand of water has been increased many folds and most of the areas are highly reliant upon the groundwater to meet this increasing demand for water, but unfortunately degradation of groundwater both in terms of quantity and quality has deteriorated the situation. Studies shows that change in climate may increase temperature by 2 to 6°C and can reduce precipitation up to 16%, which could reduce the groundwater recharge by 50%. In densely populated Ganga basin urban drainage consumes a high proportion of the investments into urban infrastructure and needs integrated approach for the sustainable development of water management, water education regarding conservation and pollution caused by urbanization. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Anil Misra, 2011. "Impact of Urbanization on the Hydrology of Ganga Basin (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 705-719, January.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:2:p:705-719
    DOI: 10.1007/s11269-010-9722-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9722-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9722-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsin Butt & Ahmad Waqas & Rashed Mahmood, 2010. "The Combined Effect of Vegetation and Soil Erosion in the Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3701-3714, October.
    2. Datta, K. K. & de Jong, C. & Singh, O. P., 2000. "Reclaiming salt-affected land through drainage in Haryana, India: a financial analysis," Agricultural Water Management, Elsevier, vol. 46(1), pages 55-71, November.
    3. Numan Mizyed, 2009. "Impacts of Climate Change on Water Resources Availability and Agricultural Water Demand in the West Bank," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2015-2029, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anil Misra, 2013. "Climate change impact, mitigation and adaptation strategies for agricultural and water resources, in Ganga Plain (India)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(5), pages 673-689, June.
    2. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    3. Hao-Che Ho & Hong-Yuan Lee & Yao-Jung Tsai & Yuan-Shun Chang, 2022. "Numerical Experiments on Low Impact Development for Urban Resilience Index," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    4. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    5. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2019. "Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1031-1047, November.
    6. Chang Liu & Emily S. Minor & Megan B. Garfinkel & Bo Mu & Guohang Tian, 2021. "Anthropogenic and Climatic Factors Differentially Affect Waterbody Area and Connectivity in an Urbanizing Landscape: A Case Study in Zhengzhou, China," Land, MDPI, vol. 10(10), pages 1-23, October.
    7. Naseem Saba & Rashid Umar, 2021. "Identification of the processes controlling groundwater quality in shallow aquifers of Moradabad city, west Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12994-13015, September.
    8. Daniela Ducci & Mariangela Sellerino, 2015. "Groundwater Mass Balance in Urbanized Areas Estimated by a Groundwater Flow Model Based on a 3D Hydrostratigraphical Model: the Case Study of the Eastern Plain of Naples (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4319-4333, September.
    9. Urvashi Sharma & Adeeba Khan & Venkatesh Dutta, 2021. "Long-term sustainability of groundwater resources in the central Ganga Alluvial Plain, India: Study from Gomti River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16015-16037, November.
    10. Shouhong Zhang & Yiping Guo, 2014. "Stormwater Capture Efficiency of Bioretention Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 149-168, January.
    11. Zikun Xing & Lloyd H. C. Chua & Haiyan Miao & Jörg Imberger & Peipei Yang, 2018. "Wind Shielding Impacts on Water Quality in an Urban Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3549-3561, September.
    12. Nitin Bassi, 2016. "Implications of Institutional Vacuum in Wetland Conservation for Water Management," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 41-50, January.
    13. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    14. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2016. "Assessing the Hydrological Response of Ayamama Watershed from Urbanization Predicted under Various Landuse Policy Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3427-3441, August.
    15. O. Barron & M. Donn & A. Barr, 2013. "Urbanisation and Shallow Groundwater: Predicting Changes in Catchment Hydrological Responses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 95-115, January.
    16. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Warda Khalid & Misbah Fida & Wakeel Hussain & Abdur Rashid & Hamad Ur Rehman, 2021. "An Investigation Based On Elements Correlation And Risk Level Of Fluoride In Groundwater In India. A Review," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 4(1), pages 11-18, March.
    2. Guoping Zhang & Mwanjalolo J.G. Majaliwa & Jian Xie, 2020. "Leveraging the Landscape," World Bank Publications - Reports 33911, The World Bank Group.
    3. E. Molina-Navarro & S. Martínez-Pérez & A. Sastre-Merlín & R. Bienes-Allas, 2014. "Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2129-2143, June.
    4. Chinnappa, B. & Nagaraj, N., 2007. "An Economic Analysis of Public Interventions for Amelioration of Irrigation-Induced Soil Degradation," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 20(2).
    5. Mohamed Meddi & Ali Assani & Hind Meddi, 2010. "Temporal Variability of Annual Rainfall in the Macta and Tafna Catchments, Northwestern Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3817-3833, November.
    6. Ying Wang & Yun Chen & Shizhang Peng, 2011. "A GIS Framework for Changing Cropping Pattern Under Different Climate Conditions and Irrigation Availability Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3073-3090, October.
    7. César Antonio Rodríguez González & Ángel Mariano Rodríguez-Pérez & Raúl López & José Antonio Hernández-Torres & Julio José Caparrós-Mancera, 2022. "Sensitivity Analysis in Mean Annual Sediment Yield Modeling with Respect to Rainfall Probability Distribution Functions," Land, MDPI, vol. 12(1), pages 1-22, December.
    8. Thimmappa, K. & Tripathi, R.S. & Raju, R. & Singh, Y.P., 2013. "Livelihood Security of Resource Poor Farmers through Alkali Land Reclamation: An Impact Analysis," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 26(Conferenc).
    9. Mohsin Butt & Muhammad Umar & Raheel Qamar, 2013. "Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 241-254, January.
    10. Giorgos Mallinis & Ioannis Z. Gitas & Georgios Tasionas & Fotis Maris, 2016. "Multitemporal Monitoring of Land Degradation Risk Due to Soil Loss in a Fire-Prone Mediterranean Landscape Using Multi-decadal Landsat Imagery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1255-1269, February.
    11. Raju, R. & Tripathi, R.S. & Thimmappa, K. & Kumar, P. & Kumar, S., 2015. "Impact of Waterlogged Saline Soil Reclamation on Land Productivity and Farm Income — An Economic Study from Haryana," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 28(Conferenc).
    12. Luis Garrote, 2017. "Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2951-2963, August.
    13. Zahidul Islam & Thian Gan, 2015. "Future Irrigation Demand of South Saskatchewan River Basin under the Combined Impacts of Climate Change and El Niño Southern Oscillation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2091-2105, April.
    14. Tran Ty & Kengo Sunada & Yutaka Ichikawa & Satoru Oishi, 2012. "Scenario-based Impact Assessment of Land Use/Cover and Climate Changes on Water Resources and Demand: A Case Study in the Srepok River Basin, Vietnam—Cambodia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1387-1407, March.
    15. Datta, K. K. & Jong, C. de, 2002. "Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India," Agricultural Water Management, Elsevier, vol. 57(3), pages 223-238, December.
    16. L Benini & M Antonellini & M Laghi & P. N. Mollema, 2016. "Assessment of Water Resources Availability and Groundwater Salinization in Future Climate and Land use Change Scenarios: A Case Study from a Coastal Drainage Basin in Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 731-745, January.
    17. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    18. Singh, Ajay, 2019. "Poor-drainage-induced salinization of agricultural lands: Management through structural measures," Land Use Policy, Elsevier, vol. 82(C), pages 457-463.
    19. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Liangang Chen & Xin Qian & Yong Shi, 2011. "Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3445-3463, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:2:p:705-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.