[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v56y2015i3p829-847.html
   My bibliography  Save this article

Uncertainty intervals for regression parameters with non-ignorable missingness in the outcome

Author

Listed:
  • Minna Genbäck
  • Elena Stanghellini
  • Xavier Luna
Abstract
When estimating regression models with missing outcomes, scientists usually have to rely either on a missing at random assumption (missing mechanism is independent from the outcome given the observed variables) or on exclusion restrictions (some of the covariates affecting the missingness mechanism do not affect the outcome). Both these hypotheses are controversial in applications since they are typically not testable from the data. The alternative, which we pursue here, is to derive identification sets (instead of point identification) for the parameters of interest when allowing for a missing not at random mechanism. The non-ignorability of this mechanism is quantified with a parameter. When the latter can be bounded with a priori information, a bounded identification set follows. Our approach allows the outcome to be continuous and unbounded and relax distributional assumptions. Estimation of the identification sets can be performed via ordinary least squares and sampling variability can be incorporated yielding uncertainty intervals achieving a coverage of at least ( $$1-\alpha )$$ 1 - α ) probability. Our work is motivated by a study on predictors of body mass index (BMI) change in middle age men allowing us to identify possible predictors of BMI change even when assuming little on the missing mechanism. Copyright The Author(s) 2015

Suggested Citation

  • Minna Genbäck & Elena Stanghellini & Xavier Luna, 2015. "Uncertainty intervals for regression parameters with non-ignorable missingness in the outcome," Statistical Papers, Springer, vol. 56(3), pages 829-847, August.
  • Handle: RePEc:spr:stpapr:v:56:y:2015:i:3:p:829-847
    DOI: 10.1007/s00362-014-0610-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-014-0610-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-014-0610-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Jonsson, 2012. "When does Heckman’s two-step procedure for censored data work and when does it not?," Statistical Papers, Springer, vol. 53(1), pages 33-49, February.
    2. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    3. Olsen, Randall J, 1982. "Distributional Tests for Selectivity Bias and a More Robust Likelihood Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(1), pages 223-240, February.
    4. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    5. Xavier de Luna & Mathias Lundin, 2014. "Sensitivity analysis of the unconfoundedness assumption with an application to an evaluation of college choice effects on earnings," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1767-1784, August.
    6. Horowitz, Joel L. & Manski, Charles F., 2006. "Identification and estimation of statistical functionals using incomplete data," Journal of Econometrics, Elsevier, vol. 132(2), pages 445-459, June.
    7. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    8. John Copas & Shinto Eguchi, 2005. "Local model uncertainty and incomplete‐data bias (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 459-513, September.
    9. Mroz, Thomas A, 1987. "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica, Econometric Society, vol. 55(4), pages 765-799, July.
    10. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    11. Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
    12. John B. Copas, 2013. "A likelihood-based sensitivity analysis for publication bias in meta-analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(1), pages 47-66, January.
    13. Little, Roderick J A, 1985. "A Note about Models for Selectivity Bias," Econometrica, Econometric Society, vol. 53(6), pages 1469-1474, November.
    14. Masayuki Henmi & John B. Copas & Shinto Eguchi, 2007. "Confidence Intervals and P-Values for Meta-Analysis with Publication Bias," Biometrics, The International Biometric Society, vol. 63(2), pages 475-482, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fayyaz Bahari & Safar Parsi & Mojtaba Ganjali, 2021. "Empirical likelihood inference in general linear model with missing values in response and covariates by MNAR mechanism," Statistical Papers, Springer, vol. 62(2), pages 591-622, April.
    2. Minna Genbäck & Nawi Ng & Elena Stanghellini & Xavier de Luna, 2018. "Predictors of decline in self-reported health: addressing non-ignorable dropout in longitudinal studies of aging," European Journal of Ageing, Springer, vol. 15(2), pages 211-220, June.
    3. Gorbach, Tetiana & de Luna, Xavier, 2018. "Inference for partial correlation when data are missing not at random," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 82-89.
    4. Marco Doretti & Martina Raggi & Elena Stanghellini, 2022. "Exact parametric causal mediation analysis for a binary outcome with a binary mediator," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 87-108, March.
    5. Anita Lindmark, 2022. "Sensitivity analysis for unobserved confounding in causal mediation analysis allowing for effect modification, censoring and truncation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 785-814, October.
    6. Fayyaz Bahari & Safar Parsi & Mojtaba Ganjali, 2021. "Goodness of fit test for general linear model with nonignorable missing on response variable," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 163-196, March.
    7. Emmanuel O. Ogundimu, 2022. "Regularization and variable selection in Heckman selection model," Statistical Papers, Springer, vol. 63(2), pages 421-439, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xavier de Luna & Mathias Lundin, 2014. "Sensitivity analysis of the unconfoundedness assumption with an application to an evaluation of college choice effects on earnings," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1767-1784, August.
    2. Angrist, Joshua D., 1997. "Conditional independence in sample selection models," Economics Letters, Elsevier, vol. 54(2), pages 103-112, February.
    3. Takashi Yamagata & Chris Orme, 2005. "On Testing Sample Selection Bias Under the Multicollinearity Problem," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 467-481.
    4. Stern, Steven, 1996. "Semiparametric estimates of the supply and demand effects of disability on labor force participation," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 49-70.
    5. Carmen Aina & Irene Brunetti & Chiara Mussida & Sergio Scicchitano, 2023. "Distributional effects of COVID-19," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 221-256, March.
    6. Polachek, Solomon W., 2008. "Earnings Over the Life Cycle: The Mincer Earnings Function and Its Applications," Foundations and Trends(R) in Microeconomics, now publishers, vol. 4(3), pages 165-272, April.
    7. Duo Qin & Sophie Van Huellen & Qing-Chao Wang, 2015. "How Credible Are Shrinking Wage Elasticities of Married Women Labour Supply?," Econometrics, MDPI, vol. 4(1), pages 1-31, December.
    8. Nawata, Kazumitsu, 1995. "Estimation of sample-selection models by the maximum likelihood method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 299-303.
    9. Myck, Michal & Nici?ska, Anna & Morawski, Leszek, 2009. "Count Your Hours: Returns to Education in Poland," IZA Discussion Papers 4332, Institute of Labor Economics (IZA).
    10. Serge Atherwood & Corey S Sparks, 2019. "Early-career trajectories of young workers in the U.S. in the context of the 2008–09 recession: The effect of labor market entry timing," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-30, March.
    11. Emmanuel O. Ogundimu & Jane L. Hutton, 2016. "A Sample Selection Model with Skew-normal Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 172-190, March.
    12. Kaitlin Anderson & Gema Zamarro & Jennifer Steele & Trey Miller, 2021. "Comparing Performance of Methods to Deal With Differential Attrition in Randomized Experimental Evaluations," Evaluation Review, , vol. 45(1-2), pages 70-104, February.
    13. Peichl, Andreas & Schneider, Hilmar & Siegloch, Sebastian, 2010. "Documentation IZA?MOD: The IZA Policy SImulation MODel," IZA Discussion Papers 4865, Institute of Labor Economics (IZA).
    14. Guanming He, 2023. "How do insider trading incentives shape nonfinancial disclosures? Evidence from product and business expansion disclosures," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 147-194, January.
    15. Duo Qin & Sophie van H¸llen & Qing-Chao Wang, 2014. "What Happens to Wage Elasticities When We Strip Playometrics? Revisiting Married Women Labour Supply Model," Working Papers 190, Department of Economics, SOAS University of London, UK.
    16. Joshua D. Angrist, 1995. "Conditioning on the Probability of Selection to Control Selection Bias," NBER Technical Working Papers 0181, National Bureau of Economic Research, Inc.
    17. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    18. Ting Ye & Luke Keele & Raiden Hasegawa & Dylan S. Small, 2020. "A Negative Correlation Strategy for Bracketing in Difference-in-Differences," Papers 2006.02423, arXiv.org, revised Jun 2022.
    19. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    20. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:56:y:2015:i:3:p:829-847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.