[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v41y2013i3p537-549.html
   My bibliography  Save this article

Modeling resource flow asymmetries using condensation networks

Author

Listed:
  • Pascal Billand
  • Christophe Bravard
  • Sudipta Sarangi
Abstract
This paper examines strict Nash networks in the noncooperative directed flow model of Bala and Goyal (Econometrica 68(5):1181–1230, 2000 ) with partner heterogeneity (payoff of a player in a link depends on the identity of her link partner). We focus on the asymmetries with regard to the resources obtained by players. Using the notion of condensation networks, we partition the population into groups of players who obtain the same resources and order these groups according to the resources they obtain. We show that the partner heterogeneity assumption impacts the strict Nash networks asymmetries in a different way than Galeotti (Econ Theory 29(1):163–179, 2006 ) player heterogeneity assumption (the payoff of a player in a link depends on her own identity). Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2013. "Modeling resource flow asymmetries using condensation networks," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 537-549, September.
  • Handle: RePEc:spr:sochwe:v:41:y:2013:i:3:p:537-549
    DOI: 10.1007/s00355-012-0697-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00355-012-0697-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00355-012-0697-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 2000. "Scale-free characteristics of random networks: the topology of the world-wide web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 69-77.
    2. Robert P. Gilles & Cathleen Johnson, 2000. "original papers : Spatial social networks," Review of Economic Design, Springer;Society for Economic Design, vol. 5(3), pages 273-299.
    3. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2011. "Strict Nash networks and partner heterogeneity," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 515-525, August.
    4. Haller, Hans & Sarangi, Sudipta, 2005. "Nash networks with heterogeneous links," Mathematical Social Sciences, Elsevier, vol. 50(2), pages 181-201, September.
    5. McBride, Michael, 2008. "Position-specific information in social networks: Are you connected?," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 283-295, September.
    6. Hojman, Daniel A. & Szeidl, Adam, 2008. "Core and periphery in networks," Journal of Economic Theory, Elsevier, vol. 139(1), pages 295-309, March.
    7. Kim, Chongmin & Wong, Kam-Chau, 2007. "Network formation and stable equilibrium," Journal of Economic Theory, Elsevier, vol. 133(1), pages 536-549, March.
    8. Venkatesh Bala & Sanjeev Goyal, 2000. "A Noncooperative Model of Network Formation," Econometrica, Econometric Society, vol. 68(5), pages 1181-1230, September.
    9. Andrea Galeotti, 2006. "One-way flow networks: the role of heterogeneity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 163-179, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal Billand & Christophe Bravard & Jacques Durieu & Sudipta Sarangi, 2019. "Firm Heterogeneity And The Pattern Of R&D Collaborations," Economic Inquiry, Western Economic Association International, vol. 57(4), pages 1896-1914, October.
    2. Ping Sun & Elena Parilina, 2022. "Impact of Utilities on the Structures of Stable Networks with Ordered Group Partitioning," Dynamic Games and Applications, Springer, vol. 12(4), pages 1131-1162, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2011. "Resources Flows Asymmetries in Strict Nash Networks with Partner Heterogeneity," Working Papers 1108, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    2. Billand, Pascal & Bravard, Christophe & Sarangi, Sudipta, 2012. "Existence of Nash networks and partner heterogeneity," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 152-158.
    3. Pascal Billand & Christophe Bravard & Sudipta Sarangi & J. Kamphorst, 2011. "Confirming information flows in networks," Post-Print halshs-00672351, HAL.
    4. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2011. "Strict Nash networks and partner heterogeneity," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 515-525, August.
    5. Breitmoser, Yves & Vorjohann, Pauline, 2013. "Efficient structure of noisy communication networks," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 396-409.
    6. Dev, Pritha, 2014. "Identity and fragmentation in networks," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 86-100.
    7. Joost Vandenbossche & Thomas Demuynck, 2013. "Network Formation with Heterogeneous Agents and Absolute Friction," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 23-45, June.
    8. Goeree, Jacob K. & Riedl, Arno & Ule, Aljaz, 2009. "In search of stars: Network formation among heterogeneous agents," Games and Economic Behavior, Elsevier, vol. 67(2), pages 445-466, November.
    9. Ping Sun & Elena Parilina, 2022. "Impact of Utilities on the Structures of Stable Networks with Ordered Group Partitioning," Dynamic Games and Applications, Springer, vol. 12(4), pages 1131-1162, December.
    10. Billand, Pascal & Bravard, Christophe & Kamphorst, Jurjen & Sarangi, Sudipta, 2017. "Network formation when players seek confirmation of information," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 20-31.
    11. Dotan Persitz, 2009. "Power in the Heterogeneous Connections Model: The Emergence of Core-Periphery Networks," Working Papers 2009.42, Fondazione Eni Enrico Mattei.
    12. Deroian, F., 2009. "Endogenous link strength in directed communication networks," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 110-116, January.
    13. Filippo Vergara Caffarelli, 2017. "One-Way Flow Networks with Decreasing Returns to Linking," Dynamic Games and Applications, Springer, vol. 7(2), pages 323-345, June.
    14. K. de Jaegher & J.J.A. Kamphorst, 2008. "Network formation with decreasing marginal benefits of information," Working Papers 08-16, Utrecht School of Economics.
    15. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2008. "Existence of Nash networks in one-way flow models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 491-507, December.
    16. Gao Hongwei & Qiao Han & Sedakov Artem & Wang Lei, 2015. "A Dynamic Formation Procedure of Information Flow Networks," Journal of Systems Science and Information, De Gruyter, vol. 3(2), pages 97-110, April.
    17. Haller, Hans, 2012. "Network extension," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 166-172.
    18. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    19. repec:use:tkiwps:1616 is not listed on IDEAS
    20. Olaizola, Norma & Valenciano, Federico, 2014. "Asymmetric flow networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 566-579.
      • Olaizola Ortega, María Norma & Valenciano Llovera, Federico, 2012. "Asymmetric flow networks," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    21. Dev, Pritha, 2010. "Choosing `Me' and `My Friends': Identity in a Non-Cooperative Network Formation Game with Cost Sharing," MPRA Paper 21631, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:41:y:2013:i:3:p:537-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.