[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/joevec/v25y2015i5p901-924.html
   My bibliography  Save this article

A comparison of U.S and Chinese financial market microstructure: heterogeneous agent-based multi-asset artificial stock markets approach

Author

Listed:
  • Haijun Yang
  • Harry Wang
  • Gui Sun
  • Li Wang
Abstract
The market microstructure literatures study how the traders work in the financial market. In this paper, we propose a novel heterogeneous agent-based multi-asset artificial stock market based on Santa Fe Artificial Stock Market (SFI-ASM) to compare the financial market microstructure between U.S. and China. We first develop a set of new parameters for the single stock market simulation to improve the way that agents monitor the market and choose different strategies, which make our model closer to the real financial market. Secondly, we construct a multiple assets financial market by incorporating two new types of agents, namely, zero-intelligence agents and less-intelligence agents, and conduct simulations for different evolution speeds, strategies, and intelligence levels to achieve the optimal models of Chinese and U.S. financial markets before and after the financial crisis. Based on the simulation results, we present a comprehensive analysis of the market microstructure for the two financial markets. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Haijun Yang & Harry Wang & Gui Sun & Li Wang, 2015. "A comparison of U.S and Chinese financial market microstructure: heterogeneous agent-based multi-asset artificial stock markets approach," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 901-924, November.
  • Handle: RePEc:spr:joevec:v:25:y:2015:i:5:p:901-924
    DOI: 10.1007/s00191-015-0424-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00191-015-0424-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00191-015-0424-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norman Ehrentreich, 2002. "The Santa Fe Artificial Stock Market Re-Examined - Suggested Corrections," Computational Economics 0209001, University Library of Munich, Germany.
    2. Tay, Nicholas S. P. & Linn, Scott C., 2001. "Fuzzy inductive reasoning, expectation formation and the behavior of security prices," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 321-361, March.
    3. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    4. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    5. Bray, Margaret, 1982. "Learning, estimation, and the stability of rational expectations," Journal of Economic Theory, Elsevier, vol. 26(2), pages 318-339, April.
    6. Ludo Waltman & Nees Eck & Rommert Dekker & Uzay Kaymak, 2011. "Economic modeling using evolutionary algorithms: the effect of a binary encoding of strategies," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 737-756, December.
    7. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    8. Florian Hauser & Bob Kaempff, 2013. "Evolution of trading strategies in a market with heterogeneously informed agents," Journal of Evolutionary Economics, Springer, vol. 23(3), pages 575-607, July.
    9. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    10. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    11. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    12. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    13. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    14. Hoffmann, Arvid O.I. & Post, Thomas & Pennings, Joost M.E., 2013. "Individual investor perceptions and behavior during the financial crisis," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 60-74.
    15. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    16. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    17. José A. Pascual & J. Pajares & A. López-Paredes, 2006. "Explaining the Statistical Features of the Spanish Stock Market from the Bottom-Up," Lecture Notes in Economics and Mathematical Systems, in: Charlotte Bruun (ed.), Advances in Artificial Economics, chapter 20, pages 283-294, Springer.
    18. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haijun Yang & Shuheng Chen, 2018. "A heterogeneous artificial stock market model can benefit people against another financial crisis," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-25, June.
    2. G. Rigatos, 2021. "Statistical Validation of Multi-Agent Financial Models Using the H-Infinity Kalman Filter," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 777-798, October.
    3. Wlademir Prates & Newton Da Costa Jr & Manuel Rocha Armada & Sergio Da Silva, 2019. "Propensity to sell stocks in an artificial stock market," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    2. Frank H. Westerhoff, 2009. "Exchange Rate Dynamics: A Nonlinear Survey," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 11, Edward Elgar Publishing.
    3. Alexandru Mandes & Peter Winker, 2017. "Complexity and model comparison in agent based modeling of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.
    4. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    5. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    6. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    7. Pyo, Dong-Jin, 2014. "A Multi-Factor Model of Heterogeneous Traders in a Dynamic Stock Market," Staff General Research Papers Archive 37358, Iowa State University, Department of Economics.
    8. Ya-Chi Huang & Chueh-Yung Tsao, 2018. "Discovering Traders’ Heterogeneous Behavior in High-Frequency Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 821-846, April.
    9. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    10. Pyo, Dong-Jin, 2015. "Animal spirits and stock market dynamics," ISU General Staff Papers 201501010800005596, Iowa State University, Department of Economics.
    11. Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.
    12. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    13. Daniele Giachini, 2018. "Rationality and Asset Prices under Belief Heterogeneity," LEM Papers Series 2018/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Fischer, Thomas & Riedler, Jesper, 2014. "Prices, debt and market structure in an agent-based model of the financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 95-120.
    15. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    16. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2009. "More hedging instruments may destabilize markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1912-1928, November.
    17. Cars Hommes, 2006. "Interacting Agents in Finance," Tinbergen Institute Discussion Papers 06-029/1, Tinbergen Institute.
    18. Noemi Schmitt & Frank Westerhoff, 2017. "Heterogeneity, spontaneous coordination and extreme events within large-scale and small-scale agent-based financial market models," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1041-1070, November.
    19. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    20. Tai, Chung-Ching & Chen, Shu-Heng & Yang, Lee-Xieng, 2018. "Cognitive ability and earnings performance: Evidence from double auction market experiments," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 409-440.

    More about this item

    Keywords

    Heterogeneous agent; Agent-based model; Multi-asset artificial stock market; Microstructure; C6; D8; G1;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joevec:v:25:y:2015:i:5:p:901-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.