[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v28y2003i2p365-386.html
   My bibliography  Save this article

Seasonality and Markov switching in an unobserved component time series model

Author

Listed:
  • Rob Luginbuhl
  • Aart de Vos
Abstract
It is generally acknowledged that the growth rate of output, the seasonal pattern, and the business cycle are best estimated simultaneously. To achieve this, we develop an unobserved component time series model for seasonally unadjusted US GDP. Our model incorporates a Markov switching regime to produce periods of expansion and recession, both of which are characterized by different underlying growth rates. Although both growth rates are time-varying, they are assumed to be cointegrated. The analysis is Bayesian, which fully accounts for all sources of uncertainty. Comparison with results from a similar model for seasonally adjusted data indicates that the seasonal adjustment of the data significantly alters several aspects of the full model. Copyright Springer-Verlag Berlin Heidelberg 2003

Suggested Citation

  • Rob Luginbuhl & Aart de Vos, 2003. "Seasonality and Markov switching in an unobserved component time series model," Empirical Economics, Springer, vol. 28(2), pages 365-386, April.
  • Handle: RePEc:spr:empeco:v:28:y:2003:i:2:p:365-386
    DOI: 10.1007/s001810200136
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001810200136
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001810200136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    2. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409.rdf, CPB Netherlands Bureau for Economic Policy Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:28:y:2003:i:2:p:365-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.