[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v22y1994i4p492-519.html
   My bibliography  Save this article

Detrending Time Series

Author

Listed:
  • LAWRENCE E. RAFFALOVICH

    (State University of New York at Albany)

Abstract
Trends in time series may produce spurious covariation among variables. Although it is clearly necessary to model such sources of covariation, it is equally necessary to model those processes correctly. This article considers two types of processes that produce trends in time series. Trend stationary processes produce a constant rate of change in the level of a variable. Difference stationary processes produce a random rate of change in the level of a variable. Methods to detrend time series presuppose one or the other of these two basic processes. Tests to distinguish trend stationary from difference stationary processes are described and illustrated. It is shown that choice of method makes a difference and that the consequences of incorrectly detrending time series may be severe.

Suggested Citation

  • Lawrence E. Raffalovich, 1994. "Detrending Time Series," Sociological Methods & Research, , vol. 22(4), pages 492-519, May.
  • Handle: RePEc:sae:somere:v:22:y:1994:i:4:p:492-519
    DOI: 10.1177/0049124194022004003
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124194022004003
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124194022004003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stock, James H & Watson, Mark W, 1988. "Variable Trends in Economic Time Series," Journal of Economic Perspectives, American Economic Association, vol. 2(3), pages 147-174, Summer.
    2. Nelson, Charles R & Kang, Heejoon, 1981. "Spurious Periodicity in Inappropriately Detrended Time Series," Econometrica, Econometric Society, vol. 49(3), pages 741-751, May.
    3. DeJong, David N & Whiteman, Charles H, 1991. "The Case for Trend-Stationarity Is Stronger Than We Thought," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 413-421, Oct.-Dec..
    4. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    5. Chan, K Hung & Hayya, Jack C & Ord, J Keith, 1977. "A Note on Trend Removal Methods: The Case of Polynomial Regression versus Variate Differencing," Econometrica, Econometric Society, vol. 45(3), pages 737-744, April.
    6. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    7. Plosser, Charles I. & Schwert, G. William, 1977. "Estimation of a non-invertible moving average process : The case of overdifferencing," Journal of Econometrics, Elsevier, vol. 6(2), pages 199-224, September.
    8. Kaun, David E, 1990. "War and Wall Street: The Impact of Military Conflict on Investor Attitudes," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 14(4), pages 439-452, December.
    9. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    10. DeJong, David N. & Whiteman, Charles H., 1991. "Reconsidering 'trends and random walks in macroeconomic time series'," Journal of Monetary Economics, Elsevier, vol. 28(2), pages 221-254, October.
    11. Henley, Andrew & Tsakalotos, Euclid, 1991. "Corporatism, Profit Squeeze and Investment," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 15(4), pages 425-450, December.
    12. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    13. Rudebusch, Glenn D, 1992. "Trends and Random Walks in Macroeconomic Time Series: A Re-examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(3), pages 661-680, August.
    14. Rudebusch, Glenn D, 1993. "The Uncertain Unit Root in Real GNP," American Economic Review, American Economic Association, vol. 83(1), pages 264-272, March.
    15. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    16. Michael C. Lovell, 1963. "Seasonal Adjustment of Economic Time Series and Multiple Regression," Cowles Foundation Discussion Papers 151, Cowles Foundation for Research in Economics, Yale University.
    17. DeJong, David N, et al, 1992. "Integration versus Trend Stationarity in Time Series," Econometrica, Econometric Society, vol. 60(2), pages 423-433, March.
    18. Reich, Michael, 1984. "Segmented Labour: Time Series Hypothesis and Evidence," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 8(1), pages 63-81, March.
    19. Nelson, Charles R & Kang, Heejoon, 1984. "Pitfalls in the Use of Time as an Explanatory Variable in Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(1), pages 73-82, January.
    20. Phillips, P C B, 1991. "Bayesian Routes and Unit Roots: De Rebus Prioribus Semper Est Disputandum," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 435-473, Oct.-Dec..
    21. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    22. Hayes, Kathy & Slottje, D. J. & Porter-Hudak, Susan & Scully, Gerald, 1990. "Is the size distribution of income a random walk?," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 213-226.
    23. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    24. Kim, Benjamin J. C., 1988. "Real wage response to monetary shocks: A disaggregated analysis," Journal of Macroeconomics, Elsevier, vol. 10(2), pages 183-200.
    25. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Vijayamohanan Pillai, 2010. "Electricity Demand Analysis and Forecasting- The Tradition is Questioned," Working Papers id:2966, eSocialSciences.
    2. Jürgen Wolters & Uwe Hassler, 2006. "Unit root testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 43-58, March.
    3. N. Vijayamohanan Pillai, 2001. "Electricity demand analysis and forecasting: The tradition is questioned," Centre for Development Studies, Trivendrum Working Papers 312, Centre for Development Studies, Trivendrum, India.
    4. Bennett T. McCallum, 1993. "Unit roots in macroeconomic time series: some critical issues," Economic Quarterly, Federal Reserve Bank of Richmond, issue Spr, pages 13-44.
    5. Tung Liu & Lee C. Spector, 2005. "Dynamic employment adjustments over business cycles," Empirical Economics, Springer, vol. 30(1), pages 151-169, January.
    6. Magris Martin & Iosifidis Alexandros, 2021. "Approximate Bayes factors for unit root testing," Papers 2102.10048, arXiv.org, revised Feb 2021.
    7. H. Naci Mocan & Hope Corman, 2000. "A Time-Series Analysis of Crime, Deterrence, and Drug Abuse in New York City," American Economic Review, American Economic Association, vol. 90(3), pages 584-604, June.
    8. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    9. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    10. W A Razzak, 2007. "A Perspective on Unit Root and Cointegration in Applied Macroeconomics," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 4(1), pages 77-102.
    11. Diebold, F.X. & Kilian, L. & Nerlove, Marc, 2006. "Time Series Analysis," Working Papers 28556, University of Maryland, Department of Agricultural and Resource Economics.
    12. Nelson, Charles R & Kang, Heejoon, 1984. "Pitfalls in the Use of Time as an Explanatory Variable in Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(1), pages 73-82, January.
    13. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, June.
    14. Schlitzer, Giuseppe, 1995. "Testing the stationarity of economic time series: further Monte Carlo evidence," Ricerche Economiche, Elsevier, vol. 49(2), pages 125-144, June.
    15. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    16. Levent KORAP, 2008. "Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
    17. Esther Stroe-Kunold & Joachim Werner, 2009. "A drunk and her dog: a spurious relation? Cointegration tests as instruments to detect spurious correlations between integrated time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(6), pages 913-940, November.
    18. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    19. Hope Corman & H. Naci Mocan, 1996. "A Time-Series Analysis of Crime and Drug Use in New York City," NBER Working Papers 5463, National Bureau of Economic Research, Inc.
    20. Newbold, Paul & Leybourne, Stephen & Wohar, Mark E., 2001. "Trend-stationarity, difference-stationarity, or neither: further diagnostic tests with an application to U.S. Real GNP, 1875-1993," Journal of Economics and Business, Elsevier, vol. 53(1), pages 85-102.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:22:y:1994:i:4:p:492-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.