[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0209.html
   My bibliography  Save this article

Modeling reasons for Russian bank license withdrawal: Unaccounted factors

Author

Listed:
  • Peresetsky, Anatoly

    (Higher School of Economics, CEMI RAS, Moscow,)

Abstract
In the paper we analyze the reasons of Russian bank license withdrawal, formulated in orders of CB RF at the period 2005.2–2008.4. During this period, after establishing deposit insurance system in Russia, two main reasons were «money laundering» and «financial insolvency». We design binary choice logit models and multinomial logit models to model probability of license withdrawal one year ahead of the event. We use in model macro indicators to control for the varying economic environment and bank-specific financial indicators taken one year before the observation of the bank status. The models reveal factors important for the prediction of the license withdrawal, which are found to be different for the two reasons. Also we investigate if multinomial model outperform binary model in the bank license withdrawal forecast. We consider dynamics of impact of unaccounted factors, including human factor.

Suggested Citation

  • Peresetsky, Anatoly, 2013. "Modeling reasons for Russian bank license withdrawal: Unaccounted factors," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 30(2), pages 49-64.
  • Handle: RePEc:ris:apltrx:0209
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2013_2_49-64.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cole, Rebel A. & Gunther, Jeffery W., 1995. "Separating the likelihood and timing of bank failure," Journal of Banking & Finance, Elsevier, vol. 19(6), pages 1073-1089, September.
    2. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    3. Izan, H. Y., 1984. "Corporate distress in Australia," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 303-320, June.
    4. Christophe J. Godlewski, 2007. "Are Ratings Consistent with Default Probabilities?: Empirical Evidence on Banks in Emerging Market Economies," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 5-23, August.
    5. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    6. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    7. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    8. Wei, Yingqi & Liu, Bo & Liu, Xiaming, 2005. "Entry modes of foreign direct investment in China: a multinomial logit approach," Journal of Business Research, Elsevier, vol. 58(11), pages 1495-1505, November.
    9. John Krainer & Jose A. Lopez, 2008. "Using Securities Market Information for Bank Supervisory Monitoring," International Journal of Central Banking, International Journal of Central Banking, vol. 4(1), pages 125-164, March.
    10. John Krainer & Jose A. Lopez, 2002. "Off-site monitoring of bank holding companies," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue may17.
    11. Arturo Estrella & Sangkyun Park & Stavros Peristiani, 2000. "Capital ratios as predictors of bank failure," Economic Policy Review, Federal Reserve Bank of New York, issue Jul, pages 33-52.
    12. Koetter, M. & Bos, J.W.B. & Heid, F. & Kolari, J.W. & Kool, C.J.M. & Porath, D., 2007. "Accounting for distress in bank mergers," Journal of Banking & Finance, Elsevier, vol. 31(10), pages 3200-3217, October.
    13. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    14. John Krainer & Jose A. Lopez, 2003. "How might financial market information be used for supervisory purposes?," Economic Review, Federal Reserve Bank of San Francisco, pages 29-45.
    15. R. Alton Gilbert & Andrew P. Meyer & Mark D. Vaughan, 2002. "Could a CAMELS downgrade model improve off-site surveillance?," Review, Federal Reserve Bank of St. Louis, vol. 84(Jan.), pages 47-63.
    16. Scott, James, 1981. "The probability of bankruptcy: A comparison of empirical predictions and theoretical models," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 317-344, September.
    17. John Krainer & Jose A. Lopez, 2009. "Do supervisory rating standards change over time?," Economic Review, Federal Reserve Bank of San Francisco, pages 13-24.
    18. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    19. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    20. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    21. Rebel Cole & Jeffery Gunther, 1998. "Predicting Bank Failures: A Comparison of On- and Off-Site Monitoring Systems," Journal of Financial Services Research, Springer;Western Finance Association, vol. 13(2), pages 103-117, April.
    22. Krainer, John & Lopez, Jose A, 2004. "Incorporating Equity Market Information into Supervisory Monitoring Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(6), pages 1043-1067, December.
    23. Bussiere, Matthieu & Fratzscher, Marcel, 2006. "Towards a new early warning system of financial crises," Journal of International Money and Finance, Elsevier, vol. 25(6), pages 953-973, October.
    24. Julapa Jagtiani & James Kolari & Catharine Lemieux & G. Hwan Shin, 2003. "Early warning models for bank supervision: Simpler could be better," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 27(Q III), pages 49-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhivaikina, A. & Peresetsky, A., 2017. "Russian Bank Credit Ratings and Bank License Withdrawal 2012-2016," Journal of the New Economic Association, New Economic Association, vol. 36(4), pages 49-80.
    2. repec:hig:wpaper:65/fe/2018 is not listed on IDEAS
    3. Емельянов А.М. & Брюхова О.О., 2015. "Исследование Причин Отзыва Лицензий У Российских Коммерческих Банков В Посткризисный Период (2010-2011)," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 51(3), pages 41-53, июль.
    4. D. Bidzhoyan S. & Д. Биджоян С., 2018. "Модель Оценки Вероятности Отзыва Лицензии У Российского Банка // Model For Assessing The Probability Of Revocation Of A License From The Russian Bank," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(2), pages 26-37.
    5. Gurova Yelena Pavlovna, 2014. "Stability of the regional banking systems in the crisis and post-crisis periods," Экономика региона, CyberLeninka;Федеральное государственное бюджетное учреждение науки «Институт экономики Уральского отделения Российской академии наук», issue 4, pages 237-245.
    6. Yelena Gurova, 2014. "Stability Of The Regional Banking Systems In The Crisis And Post-Crisis Periods," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 237-245.
    7. Mikhail Mamonov, 2018. "Bank's Hidden Negative Capital Before and After the Senior Management Change at the Bank of Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 77(1), pages 51-70, March.
    8. M. Mamonov., 2017. "Hidden "holes" in the capital of not yet failed banks in Russia: An estimate of the scope of potential losses," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 7.
    9. Denis Shibitov & Mariam Mamedli, 2019. "The finer points of model comparison in machine learning: forecasting based on russian banks’ data," Bank of Russia Working Paper Series wps43, Bank of Russia.
    10. Bekirova, Olga & Zubarev, Andrey, 2023. "Determinants of risk, profitability and default probability of Russian banks," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 71, pages 20-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
    2. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    3. repec:zbw:bofitp:2004_021 is not listed on IDEAS
    4. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    5. Пересецкий А.А., 2007. "Методы Оценки Вероятности Дефолта Банков," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 43(3), июль.
    6. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    7. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    8. G. Lanine & R. Vander Vennet, 2005. "Failure prediction in the Russian bank sector with logit and trait recognition models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/329, Ghent University, Faculty of Economics and Business Administration.
    9. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    10. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Cleary, Sean & Hebb, Greg, 2016. "An efficient and functional model for predicting bank distress: In and out of sample evidence," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 101-111.
    12. Altman, Edward I. & Saunders, Anthony, 1997. "Credit risk measurement: Developments over the last 20 years," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1721-1742, December.
    13. Zhivaikina, A. & Peresetsky, A., 2017. "Russian Bank Credit Ratings and Bank License Withdrawal 2012-2016," Journal of the New Economic Association, New Economic Association, vol. 36(4), pages 49-80.
    14. Cakir, Murat, 2005. "Firma Başarısızlığının Dinamiklerinin Belirlenmesinde Makina Öğrenmesi Teknikleri: Ampirik Uygulamalar ve Karşılaştırmalı Analiz [Machine Learning Techniques in Determining the Dynamics of Corporat," MPRA Paper 55975, University Library of Munich, Germany.
    15. Santosh Kumar Shrivastav & P. Janaki Ramudu, 2020. "Bankruptcy Prediction and Stress Quantification Using Support Vector Machine: Evidence from Indian Banks," Risks, MDPI, vol. 8(2), pages 1-22, May.
    16. Goriunov Dmytro & Venzhyk Katerina, 2013. "Loan Default Prediction in Ukrainian Retail Banking," EERC Working Paper Series 13/07e, EERC Research Network, Russia and CIS.
    17. Christian Lohmann & Thorsten Ohliger, 2017. "Nonlinear Relationships and Their Effect on the Bankruptcy Prediction," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 261-287, August.
    18. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Documents de travail du Centre d'Economie de la Sorbonne 16026, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Mehreen Mehreen & Maran Marimuthu & Samsul Ariffin Abdul Karim & Amin Jan, 2020. "Proposing a Multidimensional Bankruptcy Prediction Model: An Approach for Sustainable Islamic Banking," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    20. Christian Lohmann & Thorsten Ohliger, 2020. "Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies," Journal of Business Economics, Springer, vol. 90(1), pages 137-172, February.
    21. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01314553, HAL.

    More about this item

    Keywords

    banks; probability of bank default models; binary choice models; multinomial choice models; money laundering;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.