[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0166693.html
   My bibliography  Save this article

A Global Model for Bankruptcy Prediction

Author

Listed:
  • David Alaminos
  • Agustín del Castillo
  • Manuel Ángel Fernández
Abstract
The recent world financial crisis has increased the number of bankruptcies in numerous countries and has resulted in a new area of research which responds to the need to predict this phenomenon, not only at the level of individual countries, but also at a global level, offering explanations of the common characteristics shared by the affected companies. Nevertheless, few studies focus on the prediction of bankruptcies globally. In order to compensate for this lack of empirical literature, this study has used a methodological framework of logistic regression to construct predictive bankruptcy models for Asia, Europe and America, and other global models for the whole world. The objective is to construct a global model with a high capacity for predicting bankruptcy in any region of the world. The results obtained have allowed us to confirm the superiority of the global model in comparison to regional models over periods of up to three years prior to bankruptcy.

Suggested Citation

  • David Alaminos & Agustín del Castillo & Manuel Ángel Fernández, 2016. "A Global Model for Bankruptcy Prediction," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-18, November.
  • Handle: RePEc:plo:pone00:0166693
    DOI: 10.1371/journal.pone.0166693
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166693
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166693&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0166693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harlan D. Platt & Marjorie B. Platt, 2008. "Financial Distress Comparison Across Three Global Regions," JRFM, MDPI, vol. 1(1), pages 1-34, December.
    2. McKee, Thomas E. & Lensberg, Terje, 2002. "Genetic programming and rough sets: A hybrid approach to bankruptcy classification," European Journal of Operational Research, Elsevier, vol. 138(2), pages 436-451, April.
    3. David A. Hensher & Stewart Jones, 2007. "Forecasting Corporate Bankruptcy: Optimizing the Performance of the Mixed Logit Model," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 241-264, September.
    4. Philosophov, Leonid V. & Philosophov, Vladimir L., 2005. "Optimization of a firm's capital structure: A quantitative approach based on a probabilistic prognosis of risk and time of bankruptcy," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 191-209.
    5. Korol, Tomasz, 2013. "Early warning models against bankruptcy risk for Central European and Latin American enterprises," Economic Modelling, Elsevier, vol. 31(C), pages 22-30.
    6. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    7. Maghyereh, Aktham I. & Awartani, Basel, 2014. "Bank distress prediction: Empirical evidence from the Gulf Cooperation Council countries," Research in International Business and Finance, Elsevier, vol. 30(C), pages 126-147.
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Dopfer,Kurt (ed.), 2005. "The Evolutionary Foundations of Economics," Cambridge Books, Cambridge University Press, number 9780521621991, September.
    10. Lensberg, Terje & Eilifsen, Aasmund & McKee, Thomas E., 2006. "Bankruptcy theory development and classification via genetic programming," European Journal of Operational Research, Elsevier, vol. 169(2), pages 677-697, March.
    11. Laitinen, Erkki K. & Laitinen, Teija, 2000. "Bankruptcy prediction: Application of the Taylor's expansion in logistic regression," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 327-349.
    12. Moshirian, Fariborz, 2003. "Globalization and financial market integration," Journal of Multinational Financial Management, Elsevier, vol. 13(4-5), pages 289-302, December.
    13. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    14. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    15. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    16. Arestis, Philip & Basu, Santonu, 2004. "Financial globalisation and regulation," Research in International Business and Finance, Elsevier, vol. 18(2), pages 129-140, June.
    17. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    18. El Kalak, Izidin & Hudson, Robert, 2016. "The effect of size on the failure probabilities of SMEs: An empirical study on the US market using discrete hazard model," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 135-145.
    19. Evans, Jocelyn & Borders, Aberdeen Leila, 2014. "Strategically Surviving Bankruptcy during a Global Financial Crisis: The Importance of Understanding Chapter 15," Journal of Business Research, Elsevier, vol. 67(1), pages 2738-2742.
    20. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    21. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    22. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    23. Kevin Aretz & Peter F. Pope, 2013. "Common Factors in Default Risk Across Countries and Industries," European Financial Management, European Financial Management Association, vol. 19(1), pages 108-152, January.
    24. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    25. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Błażej Prusak, 2018. "Review of Research into Enterprise Bankruptcy Prediction in Selected Central and Eastern European Countries," IJFS, MDPI, vol. 6(3), pages 1-28, June.
    2. Rafael Becerra-Vicario & David Alaminos & Eva Aranda & Manuel A. Fernández-Gámez, 2020. "Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    3. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    4. Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    5. Bagheri, Oveis & Ranjbaran Jalili, Mona, 2020. "Accruals Quality and Bankruptcy in Shirata Model (Case Study: Tehran Stock Exchange)," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 15(4), pages 381-402, October.
    6. Svabova Lucia & Durica Marek & Podhorska Ivana, 2018. "Prediction of Default of Small Companies in the Slovak Republic," Economics and Culture, Sciendo, vol. 15(1), pages 88-95, June.
    7. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    8. Zura Kakushadze & Juan Andrés Serur, 2018. "151 Trading Strategies," Springer Books, Springer, number 978-3-030-02792-6, June.
    9. David Alaminos & Manuel Ángel Fernández, 2019. "Why do football clubs fail financially? A financial distress prediction model for European professional football industry," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
    10. Adit Chopra & Abhi Bansal & Aryaman Wadhwa, 2020. "Evidence of Predicting Early Signs of Corporate Bankruptcy Using Financial Ratios in the Indian Landscape," Papers 2008.04782, arXiv.org.
    11. Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
    12. Misankova Maria & Zvarikova Katarina & Kliestikova Jana, 2017. "Bankruptcy Practice in Countries of Visegrad Four," Economics and Culture, Sciendo, vol. 14(1), pages 108-118, June.
    13. Jakub Horak & Tomas Krulicky & Zuzana Rowland & Veronika Machova, 2020. "Creating a Comprehensive Method for the Evaluation of a Company," Sustainability, MDPI, vol. 12(21), pages 1-23, November.
    14. Katarina Valaskova & Tomas Kliestik & Lucia Svabova & Peter Adamko, 2018. "Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    15. Rafał Balina & Marta Idasz-Balina & Noer Azam Achsani, 2021. "Predicting Insolvency of the Construction Companies in the Creditworthiness Assessment Process—Empirical Evidence from Poland," JRFM, MDPI, vol. 14(10), pages 1-16, September.
    16. Zazueta, Jorge & Heredia, Andrea Chavez & Zazueta-Hernández, Jorge, 2021. "Endogenous Prediction of Bankruptcy using a Support Vector Machine," SocArXiv ehpt7, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    2. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    3. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    4. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    5. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    7. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    8. Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
    9. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    10. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    11. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    12. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    13. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    14. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    15. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.
    16. Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
    17. Velia Gabriella Cenciarelli & Marco Maria Mattei & Giulio Greco, 2020. "Pressione competitiva e previsione dell?insolvenza," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2020(3), pages 35-58.
    18. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    19. Marco Muscettola, 2019. "Distinctiveness of Highly Risky Italian Firms That are Saved-A Logistic Approach," Applied Economics and Finance, Redfame publishing, vol. 6(1), pages 64-73, January.
    20. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0166693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.