[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0155226.html
   My bibliography  Save this article

Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling

Author

Listed:
  • Stefanie Hieke
  • Axel Benner
  • Richard F Schlenk
  • Martin Schumacher
  • Lars Bullinger
  • Harald Binder
Abstract
Clinical cohorts with time-to-event endpoints are increasingly characterized by measurements of a number of single nucleotide polymorphisms that is by a magnitude larger than the number of measurements typically considered at the gene level. At the same time, the size of clinical cohorts often is still limited, calling for novel analysis strategies for identifying potentially prognostic SNPs that can help to better characterize disease processes. We propose such a strategy, drawing on univariate testing ideas from epidemiological case-controls studies on the one hand, and multivariable regression techniques as developed for gene expression data on the other hand. In particular, we focus on stable selection of a small set of SNPs and corresponding genes for subsequent validation. For univariate analysis, a permutation-based approach is proposed to test at the gene level. We use regularized multivariable regression models for considering all SNPs simultaneously and selecting a small set of potentially important prognostic SNPs. Stability is judged according to resampling inclusion frequencies for both the univariate and the multivariable approach. The overall strategy is illustrated with data from a cohort of acute myeloid leukemia patients and explored in a simulation study. The multivariable approach is seen to automatically focus on a smaller set of SNPs compared to the univariate approach, roughly in line with blocks of correlated SNPs. This more targeted extraction of SNPs results in more stable selection at the SNP as well as at the gene level. Thus, the multivariable regression approach with resampling provides a perspective in the proposed analysis strategy for SNP data in clinical cohorts highlighting what can be added by regularized regression techniques compared to univariate analyses.

Suggested Citation

  • Stefanie Hieke & Axel Benner & Richard F Schlenk & Martin Schumacher & Lars Bullinger & Harald Binder, 2016. "Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0155226
    DOI: 10.1371/journal.pone.0155226
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155226
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0155226&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0155226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.
    2. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    3. Binder Harald & Schumacher Martin, 2008. "Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-28, March.
    4. W. Sauerbrei & P. Royston, 1999. "Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 71-94.
    5. Patrick Royston & Gareth Ambler, 1999. "Multivariable fractional polynomials," Stata Technical Bulletin, StataCorp LP, vol. 8(43).
    6. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
    9. Binder Harald & Müller Tina & Schwender Holger & Golka Klaus & Steffens Michael & Hengstler Jan G. & Ickstadt Katja & Schumacher Martin, 2012. "Cluster-Localized Sparse Logistic Regression for SNP Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-31, August.
    10. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sariyar Murat & Schumacher Martin & Binder Harald, 2014. "A boosting approach for adapting the sparsity of risk prediction signatures based on different molecular levels," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 343-357, June.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    4. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.
    5. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
    6. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    7. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    8. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    9. Ming Yi & Ruoqing Zhu & Robert M Stephens, 2018. "GradientScanSurv—An exhaustive association test method for gene expression data with censored survival outcome," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-28, December.
    10. Ju, Xiaomeng & Salibián-Barrera, Matías, 2021. "Robust boosting for regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    11. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
    12. Hendrik van der Wurp & Andreas Groll, 2023. "Introducing LASSO-type penalisation to generalised joint regression modelling for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 127-151, March.
    13. Thomas Kneib & Torsten Hothorn & Gerhard Tutz, 2009. "Variable Selection and Model Choice in Geoadditive Regression Models," Biometrics, The International Biometric Society, vol. 65(2), pages 626-634, June.
    14. Julia Gilhodes & Florence Dalenc & Jocelyn Gal & Christophe Zemmour & Eve Leconte & Jean Marie Boher & Thomas Filleron, 2020. "Comparison of Variable Selection Methods for Time-to-Event Data in High-Dimensional Settings," Post-Print hal-02934793, HAL.
    15. Daye, Z. John & Jeng, X. Jessie, 2009. "Shrinkage and model selection with correlated variables via weighted fusion," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1284-1298, February.
    16. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    17. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    18. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    19. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    20. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0155226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.