[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v24y2021i3p559-588..html
   My bibliography  Save this article

Double/debiased machine learning for logistic partially linear model

Author

Listed:
  • Molei Liu
  • Yi Zhang
  • Doudou Zhou
Abstract
SummaryWe propose double/debiased machine learning approaches to infer a parametric component of a logistic partially linear model. Our framework is based on a Neyman orthogonal score equation consisting of two nuisance models for the nonparametric component of the logistic model and conditional mean of the exposure with the control group. To estimate the nuisance models, we separately consider the use of high dimensional (HD) sparse regression and (nonparametric) machine learning (ML) methods. In the HD case, we derive certain moment equations to calibrate the first order bias of the nuisance models, which preserves the model double robustness property. In the ML case, we handle the nonlinearity of the logit link through a novel and easy-to-implement ‘full model refitting’ procedure. We evaluate our methods through simulation and apply them in assessing the effect of the emergency contraceptive pill on early gestation and new births based on a 2008 policy reform in Chile.

Suggested Citation

  • Molei Liu & Yi Zhang & Doudou Zhou, 2021. "Double/debiased machine learning for logistic partially linear model," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 559-588.
  • Handle: RePEc:oup:emjrnl:v:24:y:2021:i:3:p:559-588.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utab019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.
    2. Jonathan Fuhr & Dominik Papies, 2024. "Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions," Papers 2409.01266, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:24:y:2021:i:3:p:559-588.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.