BLP-2LASSO for aggregate discrete choice models with rich covariates
Author
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Haoge Chang & Yusuke Narita & Kota Saito, 2022. "Approximating Choice Data by Discrete Choice Models," Papers 2205.01882, arXiv.org, revised Dec 2023.
- Xi Chen & Ralf van der Lans & Michael Trusov, 2021. "Efficient Estimation of Network Games of Incomplete Information: Application to Large Online Social Networks," Management Science, INFORMS, vol. 67(12), pages 7575-7598, December.
- Masayuki Sawada & Kohei Kawaguchi, 2020. "Estimating High-Dimensional Discrete Choice Model of Differentiated Products with Random Coefficients," Papers 2004.08791, arXiv.org.
- Brett R. Gordon & Mitchell J. Lovett & Bowen Luo & James C. Reeder, 2023. "Disentangling the Effects of Ad Tone on Voter Turnout and Candidate Choice in Presidential Elections," Management Science, INFORMS, vol. 69(1), pages 220-243, January.
- Wang, Ao, 2021. "A BLP Demand Model of Product-Level Market Shares with Complementarity," The Warwick Economics Research Paper Series (TWERPS) 1351, University of Warwick, Department of Economics.
More about this item
Keywords
Random-coefficients logit model; high-dimensional regressors; LASSO; elections; machine learning; big data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:22:y:2019:i:3:p:262-281.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.