[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/lus/reveco/v66y2015i1p99-128.html
   My bibliography  Save this article

Determinants of house price dynamics. What can we learn from search engine data?

Author

Listed:
  • Oestmann Marco

    (Helmut Schmidt University Hamburg, Department of Economics, Holstenhofweg 85, D-22043 Hamburg)

  • Bennöhr Lars

    (Helmut Schmidt University Hamburg, Department of Economics, Holstenhofweg 85, D-22043 Hamburg)

Abstract
There is a broad literature on determinants of house price dynamics, which received increasing attention in the aftermath of the subprime crisis. Additional to macroeconomic standard variables, there might be other hard to measure or even unobservable factors influencing real estate prices. Using quarterly data, we try to increase the informational input of conventional models and capture such effects by including Google search engine query information into a set of standard fundamental variables explaining house prices. We use the house price index (HPI) published by Eurostat to perform fixed-effects regressions for a panel of 14 EU-countries comprising the years 2005-2013. We find that Google data as a single aggregate measure plays a prominent role in explaining house price developments.

Suggested Citation

  • Oestmann Marco & Bennöhr Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
  • Handle: RePEc:lus:reveco:v:66:y:2015:i:1:p:99-128
    DOI: 10.1515/roe-2015-0106
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/roe-2015-0106
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/roe-2015-0106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hideaki Hirata & M. Ayhan Kose & Christopher Otrok & Marco E Terrones, 2013. "Global House Price Fluctuations: Synchronization and Determinants," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 9(1), pages 119-166.
    2. Kearl, J R, 1979. "Inflation, Mortgages, and Housing," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 1115-1138, October.
    3. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    4. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    5. Konstantin A. Kholodilin & Maximilian Podstawski & Boriss Siliverstovs & Constantin Bürgi, 2009. "Google Searches as a Means of Improving the Nowcasts of Key Macroeconomic Variables," Discussion Papers of DIW Berlin 946, DIW Berlin, German Institute for Economic Research.
    6. Nicholas Taylor, 2014. "Economic forecast quality: information timeliness and data vintage effects," Empirical Economics, Springer, vol. 46(1), pages 145-174, February.
    7. Smith, Lawrence B, 1969. "A Model of the Canadian Housing and Mortgage Markets," Journal of Political Economy, University of Chicago Press, vol. 77(5), pages 795-816, Sept./Oct.
    8. Ralf Hohenstatt & Manuel Käsbauer & Wolfgang Schäfers, 2011. ""Geco" and its potential for real estate research: Evidence from the US housing market," Journal of Real Estate Research, American Real Estate Society, vol. 33(4), pages 471-506.
    9. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    10. Aoki, Kosuke & Proudman, James & Vlieghe, Gertjan, 2004. "House prices, consumption, and monetary policy: a financial accelerator approach," Journal of Financial Intermediation, Elsevier, vol. 13(4), pages 414-435, October.
    11. Buckley, Robert & Ermisch, John, 1982. "Government Policy and House Prices in the United Kingdom: An Econometric Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 44(4), pages 273-304, November.
    12. Haucap, Justus & Kehder, Christiane, 2013. "Suchmaschinen zwischen Wettbewerb und Monopol: Der Fall Google," DICE Ordnungspolitische Perspektiven 44, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    13. Mr. Paul Louis Ceriel Hilbers & Angana Banerji & Haiyan Shi & Mr. Willy A Hoffmaister, 2008. "House Price Developments in Europe: A Comparison," IMF Working Papers 2008/211, International Monetary Fund.
    14. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    15. Dougherty, Ann & Van Order, Robert, 1982. "Inflation, Housing Costs, and the Consumer Price Index," American Economic Review, American Economic Association, vol. 72(1), pages 154-164, March.
    16. Mr. Calvin Schnure, 2005. "Boom-Bust Cycles in Housing: The Changing Role of Financial Structure," IMF Working Papers 2005/200, International Monetary Fund.
    17. McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
    18. John B. Taylor, 2007. "Housing and monetary policy," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 463-476.
    19. Michael Berlemann & Julia Freese, 2013. "Monetary policy and real estate prices: a disaggregated analysis for Switzerland," International Economics and Economic Policy, Springer, vol. 10(4), pages 469-490, December.
    20. Gattini, Luca & Hiebert, Paul, 2010. "Forecasting and assessing Euro area house prices through the lens of key fundamentals," Working Paper Series 1249, European Central Bank.
    21. David M. Drukker, 2003. "Testing for serial correlation in linear panel-data models," Stata Journal, StataCorp LP, vol. 3(2), pages 168-177, June.
    22. Kajuth, Florian & Knetsch, Thomas A. & Pinkwart, Nicolas, 2013. "Assessing house prices in Germany: Evidence from an estimated stock-flow model using regional data," Discussion Papers 46/2013, Deutsche Bundesbank.
    23. Charles Himmelberg & Christopher Mayer & Todd Sinai, 2005. "Assessing High House Prices: Bubbles, Fundamentals and Misperceptions," Journal of Economic Perspectives, American Economic Association, vol. 19(4), pages 67-92, Fall.
    24. Bouwman, Kees E. & Jacobs, Jan P.A.M., 2011. "Forecasting with real-time macroeconomic data: The ragged-edge problem and revisions," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 784-792.
    25. Marian Alexander Dietzel & Nicole Braun & Wolfgang Schäfers, 2014. "Sentiment-Based Commercial Real Estate Forecasting with Google Search Volume Data," ERES eres2014_17, European Real Estate Society (ERES).
    26. Charles H. Wurtzebach & Glenn R. Mueller & Donna Machi, 1991. "The Impact of Inflation and Vacancy on Real Estate Returns," Journal of Real Estate Research, American Real Estate Society, vol. 6(2), pages 153-168.
    27. Nathalie Girouard & Mike Kennedy & Paul van den Noord & Christophe André, 2006. "Recent House Price Developments: The Role of Fundamentals," OECD Economics Department Working Papers 475, OECD Publishing.
    28. James M. Poterba, 1984. "Tax Subsidies to Owner-Occupied Housing: An Asset-Market Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 99(4), pages 729-752.
    29. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    30. Charles Goodhart & Boris Hofmann, 2008. "House prices, money, credit, and the macroeconomy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 24(1), pages 180-205, spring.
    31. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    32. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    33. Christian Hott, 2007. "Explaining house price fluctuations," Proceedings 1055, Federal Reserve Bank of Chicago.
    34. Eli Beracha & M. Babajide Wintoki, 2013. "Forecasting Residential Real Estate Price Changes from Online Search Activity," Journal of Real Estate Research, American Real Estate Society, vol. 35(3), pages 283-312.
    35. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    36. repec:arz:wpaper:eres2014-17 is not listed on IDEAS
    37. Peter Abelson & Roselyne Joyeux & George Milunovich & Demi Chung, 2005. "Explaining House Prices in Australia: 1970–2003," The Economic Record, The Economic Society of Australia, vol. 81(s1), pages 96-103, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    2. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    3. Camilo Acosta & Luis Baldomero-Quintana, 2024. "Quality of communications infrastructure, local structural transformation, and inequality," Journal of Economic Geography, Oxford University Press, vol. 24(1), pages 117-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    2. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
    3. Jakob B Madsen, 2011. "A q Model of House Prices," Monash Economics Working Papers 03-11, Monash University, Department of Economics.
    4. Jakob B Madsen, 2011. "A Repayment Model of House Prices," Monash Economics Working Papers 09-11, Monash University, Department of Economics.
    5. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    6. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    7. Lenarčič, Črt & Zorko, Robert & Herman, Uroš & Savšek, Simon, 2016. "A Primer on Slovene House Prices Forecast," MPRA Paper 103552, University Library of Munich, Germany.
    8. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    9. Park, Sungjun & Kim, Jinsoo, 2018. "The effect of interest in renewable energy on US household electricity consumption: An analysis using Google Trends data," Renewable Energy, Elsevier, vol. 127(C), pages 1004-1010.
    10. Olivier Gergaud & Victor Ginsburgh, 2016. "Evaluating the Economic Effects of Cultural Events," Working Papers ECARES ECARES 2016-24, ULB -- Universite Libre de Bruxelles.
    11. Dana Orfaig, 2017. "A Structural VAR Model for Estimating the Link between Monetary Policy and Home Prices in Israel," Bank of Israel Working Papers 2017.09, Bank of Israel.
    12. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
    13. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    14. Madsen, Jakob B., 2012. "A behavioral model of house prices," Journal of Economic Behavior & Organization, Elsevier, vol. 82(1), pages 21-38.
    15. Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
    16. Graeme O'Meara, 2015. "Housing Bubbles and Monetary Policy: A Reassessment," The Economic and Social Review, Economic and Social Studies, vol. 46(4), pages 521-565.
    17. Gary John Rangel & Jason Wei Jian Ng, 2017. "Macroeconomic Drivers of Singapore Private Residential Prices: A Markov-Switching Approach," Capital Markets Review, Malaysian Finance Association, vol. 25(2), pages 15-31.
    18. van der Wielen, Wouter & Barrios, Salvador, 2021. "Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU," Journal of Economics and Business, Elsevier, vol. 115(C).
    19. Neil Bhutta & Daniel R. Ringo, 2017. "The Effect of Interest Rates on Home Buying : Evidence from a Discontinuity in Mortgage Insurance Premiums," Finance and Economics Discussion Series 2017-086, Board of Governors of the Federal Reserve System (U.S.).
    20. Theodore Panagiotidis & Panagiotis Printzis, 2016. "On the macroeconomic determinants of the housing market in Greece: a VECM approach," International Economics and Economic Policy, Springer, vol. 13(3), pages 387-409, July.

    More about this item

    Keywords

    Google Trends; House Price Index; Real Estate; Google Trends; House Price Index; Real Estate;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lus:reveco:v:66:y:2015:i:1:p:99-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.