[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/lrc/larijb/v3y2013i2p114-121.html
   My bibliography  Save this article

Forecasting the investors behavior on the capital market in Romania: Trading strategies based on technical analysis versus Artificial Intelligence techniques

Author

Listed:
  • Gabriela Victoria Anghelache

    (Professor, Department of Money and Banking,Bucharest University of Economic Studies, Romania)

  • Alina Lucia Trifan

    (Ph.D. Assistant, Department of Money and Banking,Bucharest University of Economic Studies, Romania)

Abstract
This research aims at characterizing and modelling the investors’ behaviours present on the Romanian capital market, by analyzing the behaviours proposed by the efficient markets theory and investigating the possibility of financial time series behaviour forecasting through artificial intelligence concepts and tools (artificial neural networks, fuzzy logic, neuro-fuzzy systems).The analysis of various forecasting strategies has been conducted using data sets on a daily basis, on a time horizon of nine years, for a total of 22 companies listed on BSE and for the BET and BET-C exchange indexes; the research is differentiating the pre-crisis period and the crisis period.

Suggested Citation

  • Gabriela Victoria Anghelache & Alina Lucia Trifan, 2013. "Forecasting the investors behavior on the capital market in Romania: Trading strategies based on technical analysis versus Artificial Intelligence techniques," International Journal of Business and Social Research, LAR Center Press, vol. 3(2), pages 114-121, February.
  • Handle: RePEc:lrc:larijb:v:3:y:2013:i:2:p:114-121
    as

    Download full text from publisher

    File URL: http://thejournalofbusiness.org/index.php/site/article/view/79/78
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    2. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    3. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Xiong & Yukun Bao & Zhongyi Hu, 2014. "Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting," Papers 1401.1916, arXiv.org.
    2. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    3. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    4. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
    5. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    6. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    7. Linlin Zhao & Zhansheng Liu & Jasper Mbachu, 2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand," Energies, MDPI, vol. 12(15), pages 1-24, July.
    8. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
    9. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
    10. Samadi, S. Yaser & Billard, Lynne, 2021. "Analysis of dependent data aggregated into intervals," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    11. Paweł Ziemba & Aneta Becker & Jarosław Becker, 2021. "Forecasting and Assessment of the Energy Security Risk in Fuzzy Environment," Energies, MDPI, vol. 14(18), pages 1-20, September.
    12. Paulo Rodrigues & Nazarii Salish, 2015. "Modeling and forecasting interval time series with threshold models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 41-57, March.
    13. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    14. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
    15. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    16. Fiszeder, Piotr & Perczak, Grzegorz, 2016. "Low and high prices can improve volatility forecasts during periods of turmoil," International Journal of Forecasting, Elsevier, vol. 32(2), pages 398-410.
    17. P. Velumani & N. V. N. Nampoothiri & M. Urbański, 2021. "A Comparative Study of Models for the Construction Duration Prediction in Highway Road Projects of India," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    18. Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
    19. Xianbo Li, 2022. "Sequence Model and Prediction for Sustainable Enrollments in Chinese Universities," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    20. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrc:larijb:v:3:y:2013:i:2:p:114-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Al Hossain (email available below). General contact details of provider: http://www.thejournalofbusiness.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.