[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i3p564-582.html
   My bibliography  Save this article

An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation

Author

Listed:
  • Guoming Lai

    (McCombs School of Business, The University of Texas at Austin, Austin, Texas 78712)

  • François Margot

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Nicola Secomandi

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract
The valuation of the real option to store natural gas is a practically important problem that entails dynamic optimization of inventory trading decisions with capacity constraints in the face of uncertain natural gas price dynamics. Stochastic dynamic programming is a natural approach to this valuation problem, but it does not seem to be widely used in practice because it is at odds with the high-dimensional natural gas price evolution models that are widespread among traders. According to the practice-based literature, practitioners typically value natural gas storage heuristically. The effectiveness of the heuristics discussed in this literature is currently unknown because good upper bounds on the value of storage are not available. We develop a novel and tractable approximate dynamic programming method that, coupled with Monte Carlo simulation, computes lower and upper bounds on the value of storage, which we use to benchmark these heuristics on a set of realistic instances. We find that these heuristics are extremely fast to execute but significantly suboptimal compared to our upper bound, which appears to be fairly tight and much tighter than a simpler perfect information upper bound; computing our lower bound takes more time than using these heuristics, but our lower bound substantially outperforms them in terms of valuation. Moreover, with periodic reoptimizations embedded in Monte Carlo simulation, the practice-based heuristics become nearly optimal, with one exception, at the expense of higher computational effort. Our lower bound with reoptimization is also nearly optimal, but exhibits a higher computational requirement than these heuristics. Besides natural gas storage, our results are potentially relevant for the valuation of the real option to store other commodities, such as metals, oil, and petroleum products.

Suggested Citation

  • Guoming Lai & François Margot & Nicola Secomandi, 2010. "An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation," Operations Research, INFORMS, vol. 58(3), pages 564-582, June.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:3:p:564-582
    DOI: 10.1287/opre.1090.0768
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1090.0768
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1090.0768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    3. Matt Thompson & Matt Davison & Henning Rasmussen, 2009. "Natural gas storage valuation and optimization: A real options application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 226-238, April.
    4. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    5. D. P. Kennedy, 1994. "The Term Structure Of Interest Rates As A Gaussian Random Field," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 247-258, July.
    6. Christophe Barrera-Esteve & Florent Bergeret & Charles Dossal & Emmanuel Gobet & Asma Meziou & Rémi Munos & Damien Reboul-Salze, 2006. "Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 517-540, December.
    7. Nicola Secomandi, 2008. "An Analysis of the Control-Algorithm Re-solving Issue in Inventory and Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 468-483, December.
    8. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    9. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    10. Byers, Joe Wayne, 2006. "Commodity storage valuation: A linear optimization based on traded instruments," Energy Economics, Elsevier, vol. 28(3), pages 275-287, May.
    11. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    12. James E. Smith & Kevin F. McCardle, 1999. "Options in the Real World: Lessons Learned in Evaluating Oil and Gas Investments," Operations Research, INFORMS, vol. 47(1), pages 1-15, February.
    13. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    2. Christian Bender & Nikolai Dokuchaev, 2013. "A First-Order BSPDE for Swing Option Pricing," Papers 1305.3988, arXiv.org.
    3. Guoming Lai & Mulan X. Wang & Sunder Kekre & Alan Scheller-Wolf & Nicola Secomandi, 2011. "Valuation of Storage at a Liquefied Natural Gas Terminal," Operations Research, INFORMS, vol. 59(3), pages 602-616, June.
    4. Nicola Secomandi & Guoming Lai & François Margot & Alan Scheller-Wolf & Duane J. Seppi, 2015. "Merchant Commodity Storage and Term-Structure Model Error," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 302-320, July.
    5. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    6. Anna Maria Gambaro & Nicola Secomandi, 2021. "A Discussion of Non‐Gaussian Price Processes for Energy and Commodity Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 47-67, January.
    7. Selvaprabu Nadarajah & François Margot & Nicola Secomandi, 2015. "Relaxations of Approximate Linear Programs for the Real Option Management of Commodity Storage," Management Science, INFORMS, vol. 61(12), pages 3054-3076, December.
    8. Helin Zhu & Fan Ye & Enlu Zhou, 2013. "Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes," Papers 1305.4321, arXiv.org.
    9. David B. Brown & James E. Smith, 2013. "Optimal Sequential Exploration: Bandits, Clairvoyants, and Wildcats," Operations Research, INFORMS, vol. 61(3), pages 644-665, June.
    10. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    11. Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2013. "A primal-dual algorithm for BSDEs," Papers 1310.3694, arXiv.org, revised Sep 2014.
    12. Dragos Florin Ciocan & Velibor V. Mišić, 2022. "Interpretable Optimal Stopping," Management Science, INFORMS, vol. 68(3), pages 1616-1638, March.
    13. Indrajit Mitra & Leonid Kogan, 2014. "Accuracy Verification for Numerical Solutions of Equilibrium Models," 2014 Meeting Papers 423, Society for Economic Dynamics.
    14. Santiago R. Balseiro & David B. Brown, 2019. "Approximations to Stochastic Dynamic Programs via Information Relaxation Duality," Operations Research, INFORMS, vol. 67(2), pages 577-597, March.
    15. Helin Zhu & Fan Ye & Enlu Zhou, 2015. "Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1885-1900, November.
    16. Daniel R. Jiang & Lina Al-Kanj & Warren B. Powell, 2020. "Optimistic Monte Carlo Tree Search with Sampled Information Relaxation Dual Bounds," Operations Research, INFORMS, vol. 68(6), pages 1678-1697, November.
    17. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    18. David B. Brown & Martin B. Haugh, 2017. "Information Relaxation Bounds for Infinite Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 65(5), pages 1355-1379, October.
    19. Leonid Kogan & Indrajit Mitra, 2021. "Near-Rational Equilibria in Heterogeneous-Agent Models: A Verification Method," FRB Atlanta Working Paper 2021-16, Federal Reserve Bank of Atlanta.
    20. Nadarajah, Selvaprabu & Margot, François & Secomandi, Nicola, 2017. "Comparison of least squares Monte Carlo methods with applications to energy real options," European Journal of Operational Research, Elsevier, vol. 256(1), pages 196-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:3:p:564-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.