[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v48y2014i2p159-169.html
   My bibliography  Save this article

Pareto-Improving and Self-Sustainable Pricing for the Morning Commute with Nonidentical Commuters

Author

Listed:
  • Feng Xiao

    (School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China)

  • H. M. Zhang

    (Department of Civil and Environmental Engineering, University of California, Davis, Davis, California 95616; and School of Transportation Engineering, Tongji University, Shanghai 200092, China)

Abstract
Congestion pricing, one of the effective tools to reduce congestion in a transportation network, may cause inequity among commuters if the differences in their value of time (VOT) are not properly taken into account. In this paper, we develop a bimodal competition model within the context of nonidentical commuters and departure time choice to study toll design, mode share, and benefit distribution problems. We first show that for a single bottleneck without schedule-late delay, commuters pass the bottleneck in increasing order of VOT under an optimal dynamic toll, and the optimal toll curve is strictly increasing and convex. Equipped with this result, we then derive the corresponding toll patterns, departure profiles, mode share, and user benefits in the morning commute under congestion tolls. We find that a queue-eliminating dynamic toll on the highway can drive the two-mode system to optimum, and it is Pareto improving. However, when a constant toll is used, commuters in the middle of the VOT distribution are possibly made worse off by the toll. By proposing a transit subsidy together with a toll charge on the highway, we obtain a core of feasible toll plus subsidy schemes that can simultaneously achieve three goals: driving the system toward optimum, benefiting every commuter, and financing itself without external investment. The results show that to be in this core, the toll charge can neither be too low nor too high.

Suggested Citation

  • Feng Xiao & H. M. Zhang, 2014. "Pareto-Improving and Self-Sustainable Pricing for the Morning Commute with Nonidentical Commuters," Transportation Science, INFORMS, vol. 48(2), pages 159-169, May.
  • Handle: RePEc:inm:ortrsc:v:48:y:2014:i:2:p:159-169
    DOI: 10.1287/trsc.1120.0450
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1120.0450
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1120.0450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin, Wen-Long, 2007. "A dynamical system model of the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 32-48, January.
    2. Huang, Hai-Jun, 2000. "Fares and tolls in a competitive system with transit and highway: the case with two groups of commuters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(4), pages 267-284, December.
    3. Robert B. Dial, 1999. "Network-Optimized Road Pricing: Part I: A Parable and a Model," Operations Research, INFORMS, vol. 47(1), pages 54-64, February.
    4. Charles Raux & Stéphanie Souche, 2004. "The Acceptability of Urban Road Pricing: A Theoretical Analysis Applied to Experience in Lyon," Journal of Transport Economics and Policy, University of Bath, vol. 38(2), pages 191-215, May.
    5. Arnott Richard & Kraus Marvin, 1995. "Financing Capacity in the Bottleneck Model," Journal of Urban Economics, Elsevier, vol. 38(3), pages 272-290, November.
    6. Robert B. Dial, 1999. "Network-Optimized Road Pricing: Part II: Algorithms and Examples," Operations Research, INFORMS, vol. 47(2), pages 327-336, April.
    7. Huang, Hai-Jun, 2002. "Pricing and logit-based mode choice models of a transit and highway system with elastic demand," European Journal of Operational Research, Elsevier, vol. 140(3), pages 562-570, August.
    8. Robert B. Dial, 1996. "Bicriterion Traffic Assignment: Basic Theory and Elementary Algorithms," Transportation Science, INFORMS, vol. 30(2), pages 93-111, May.
    9. Gordon F. Newell, 1987. "The Morning Commute for Nonidentical Travelers," Transportation Science, INFORMS, vol. 21(2), pages 74-88, May.
    10. Hau, Timothy D., 1992. "Economic fundamentals of road pricing : a diagrammatic analysis," Policy Research Working Paper Series 1070, The World Bank.
    11. Leurent, Fabien, 1993. "Cost versus time equilibrium over a network," European Journal of Operational Research, Elsevier, vol. 71(2), pages 205-221, December.
    12. Yang Liu & Xiaolei Guo & Hai Yang, 2009. "Pareto-improving and revenue-neutral congestion pricing schemes in two-mode traffic networks," Netnomics, Springer, vol. 10(1), pages 123-140, April.
    13. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    14. Tabuchi Takatoshi, 1993. "Bottleneck Congestion and Modal Split," Journal of Urban Economics, Elsevier, vol. 34(3), pages 414-431, November.
    15. Dial, Robert B., 1997. "Bicriterion traffic assignment: Efficient algorithms plus examples," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 357-379, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanan & Li, Xiang & Zhang, Sicheng, 2021. "Optimal pricing of customized bus services and ride-sharing based on a competitive game model," Omega, Elsevier, vol. 103(C).
    2. Zhong, Shaopeng & Jiang, Yu & Nielsen, Otto Anker, 2022. "Lexicographic multi-objective road pricing optimization considering land use and transportation effects," European Journal of Operational Research, Elsevier, vol. 298(2), pages 496-509.
    3. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    4. Yu, De-Ping & Li, Zhi-Chun, 2023. "Income distribution, implementation sequence, and equity in auto ownership rationing," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 59-89.
    5. André de Palma & Zhi-Chun Li & De-Ping Yu, 2023. "An analytical model for residential location choices of heterogeneous households in a monocentric city with stochastic bottleneck congestion," THEMA Working Papers 2023-01, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    6. Li, Zhi-Chun & Zhang, Liping, 2020. "The two-mode problem with bottleneck queuing and transit crowding: How should congestion be priced using tolls and fares?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 46-76.
    7. Zhi-Chun Li & De-Ping Yu & André de Palma, 2024. "Bottleneck congestion and urban spatial structure with heterogeneous households: Equilibrium, capacity expansion and congestion tolling," THEMA Working Papers 2024-04, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    8. Xiao, Feng & Long, Jiancheng & Li, Lu & Kou, Gang & Nie, Yu, 2019. "Promoting social equity with cyclic tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 56-73.
    9. Ding, Hongxing & Yang, Hai & Qin, Xiaoran & Xu, Hongli, 2023. "Credit charge-cum-reward scheme for green multi-modal mobility," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    10. Huo, Jinbiao & Liu, Zhiyuan & Chen, Jingxu & Cheng, Qixiu & Meng, Qiang, 2023. "Bayesian optimization for congestion pricing problems: A general framework and its instability," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 1-28.
    11. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    2. Wang, Guangchao & Jia, Ning & Ma, Shoufeng & Qi, Hang, 2014. "A rank-dependent bi-criterion equilibrium model for stochastic transportation environment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 511-529.
    3. Xu, Zhandong & Chen, Anthony & Liu, Xiaobo, 2023. "Time and toll trade-off with heterogeneous users: A continuous time surplus maximization bi-objective user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 31-58.
    4. Chi Xie & Xing Wu & Stephen Boyles, 2019. "Traffic equilibrium with a continuously distributed bound on travel weights: the rise of range anxiety and mental account," Annals of Operations Research, Springer, vol. 273(1), pages 279-310, February.
    5. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    6. Wu, Wen-Xiang & Huang, Hai-Jun, 2014. "Finding anonymous tolls to realize target flow pattern in networks with continuously distributed value of time," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 31-46.
    7. Fournier, Nicholas, 2021. "Hybrid pedestrian and transit priority zoning policies in an urban street network: Evaluating network traffic flow impacts with analytical approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 254-274.
    8. Liu, Peng & Liu, Jielun & Ong, Ghim Ping & Tian, Qiong, 2020. "Flow pattern and optimal capacity in a bi-modal traffic corridor with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    9. Tian, Li-Jun & Yang, Hai & Huang, Hai-Jun, 2013. "Tradable credit schemes for managing bottleneck congestion and modal split with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 1-13.
    10. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    11. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
    12. Hong, Sung-Pil & Kim, Kyung min & Byeon, Geunyeong & Min, Yun-Hong, 2017. "A method to directly derive taste heterogeneity of travellers’ route choice in public transport from observed routes," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 41-52.
    13. Joana Cavadas & António Pais Antunes, 2019. "An optimization model for integrated transit-parking policy planning," Transportation, Springer, vol. 46(5), pages 1867-1891, October.
    14. Tian, Li-Jun & Huang, Hai-Jun, 2015. "Modeling the modal split and trip scheduling with commuters’ uncertainty expectation," European Journal of Operational Research, Elsevier, vol. 244(3), pages 815-822.
    15. Dao-Li Zhu & Hai Yang & Chang-Min Li & Xiao-Lei Wang, 2015. "Properties of the Multiclass Traffic Network Equilibria Under a Tradable Credit Scheme," Transportation Science, INFORMS, vol. 49(3), pages 519-534, August.
    16. Wang, Judith Y.T. & Ehrgott, Matthias, 2013. "Modelling route choice behaviour in a tolled road network with a time surplus maximisation bi-objective user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 342-360.
    17. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.
    18. O’Neill, Sam & Bagdasar, Ovidiu & Berry, Stuart & Popovici, Nicolae & Raja, Ramachandran, 2022. "Modelling equilibrium for a multi-criteria selfish routing network equilibrium flow problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 658-669.
    19. Yang, Hai & Tang, Wilson H. & Man Cheung, Wing & Meng, Qiang, 2002. "Profitability and welfare gain of private toll roads in a network with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 537-554, July.
    20. Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:48:y:2014:i:2:p:159-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.