[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/hin/ijanal/980728.html
   My bibliography  Save this article

On Equalities Involving Integrals of the Logarithm of the Riemann -Function with Exponential Weight Which Are Equivalent to the Riemann Hypothesis

Author

Listed:
  • Sergey K. Sekatskii
  • Stefano Beltraminelli
  • Danilo Merlini
Abstract
Integral equalities involving integrals of the logarithm of the Riemann -function with exponential weight functions are introduced, and it is shown that an infinite number of them are equivalent to the Riemann hypothesis. Some of these equalities are tested numerically. The possible contribution of the Riemann function zeroes nonlying on the critical line is rigorously estimated and shown to be extremely small, in particular, smaller than nine milliards of decimals for the maximal possible weight function exp( ). We also show how certain Fourier transforms of the logarithm of the Riemann zeta-function taken along the real (demi)axis are expressible via elementary functions plus logarithm of the gamma-function and definite integrals thereof, as well as certain sums over trivial and nontrivial Riemann function zeroes.

Suggested Citation

  • Sergey K. Sekatskii & Stefano Beltraminelli & Danilo Merlini, 2015. "On Equalities Involving Integrals of the Logarithm of the Riemann -Function with Exponential Weight Which Are Equivalent to the Riemann Hypothesis," International Journal of Analysis, Hindawi, vol. 2015, pages 1-8, October.
  • Handle: RePEc:hin:ijanal:980728
    DOI: 10.1155/2015/980728
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ANALYSIS/2015/980728.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ANALYSIS/2015/980728.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/980728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:ijanal:980728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.