[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5201-d802103.html
   My bibliography  Save this article

Optimization and Spatiotemporal Differentiation of Carbon Emission Rights Allocation in the Power Industry in the Yangtze River Economic Belt

Author

Listed:
  • Dalai Ma

    (School of Management, Chongqing University of Technology, Chongqing 400054, China)

  • Yaping Xiao

    (School of Management, Chongqing University of Technology, Chongqing 400054, China)

  • Na Zhao

    (School of Management, Chongqing University of Technology, Chongqing 400054, China)

Abstract
Reasonable allocation of carbon emission rights aids in the realization of the goal of carbon emission reduction. The purpose of this paper is to examine how carbon emission rights in the power sector in the Yangtze River Economic Belt (the YREB) are distributed. The YREB spans China’s eastern, central, and western areas. The levels of development and resource endowment differ significantly across regions, resulting in great heterogeneity in the YREB provinces’ carbon emission rights distribution in the power sector. The ZSG–DEA model is used in this paper to re-adjust the power sector’s carbon emission quotas in each province to achieve optimal efficiency under the country’s overall carbon emission reduction target. The results show that: (1) In most provinces, the power sector’s initial distribution efficiency is inefficient. Only Zhejiang and Yunnan have reached the production frontier, with Jiangxi and Chongqing having the lowest distribution efficiency. In the future, we should concentrate our efforts on them for conserving energy and lowering emissions; (2) The initial distribution efficiency of the power sector in the YREB’s upstream, midstream, and downstream regions is considerably different. Most upstream and downstream provinces have higher carbon emission quotas, while most midstream provinces have less, implying that the power sector in the midstream provinces faces greater emission reduction challenges; (3) The carbon emission quotas of the power industry varies greatly between provinces and shows different spatial features over time. In the early stage (2021–2027), the carbon emission quota varies substantially, while for the later stage (2027–2030), it is rather balanced. Zhejiang, Jiangsu, Sichuan, and Yunnan are more likely to turn into sellers in the market for carbon emission trading with larger carbon emission quotas. While Jiangxi and Chongqing are more likely to turn into buyers in the market for carbon emission trading with fewer carbon emission quotas. Other provinces’ carbon emission quotas are more evenly distributed. To successfully achieve China’s emission reduction target by 2030, the YREB should promote regional collaboration, optimize industrial structure, accelerate technical innovation, establish emission reduction regulations, and provide financial support based on local conditions.

Suggested Citation

  • Dalai Ma & Yaping Xiao & Na Zhao, 2022. "Optimization and Spatiotemporal Differentiation of Carbon Emission Rights Allocation in the Power Industry in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5201-:d:802103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 83-116.
    2. Burtraw, Dallas & McCormack, Kristen, 2017. "Consignment auctions of free emissions allowances," Energy Policy, Elsevier, vol. 107(C), pages 337-344.
    3. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    4. Oliver Sartor & Clement Palli�re & Stephen Lecourt, 2014. "Benchmark-based allocations in EU ETS Phase 3: an early assessment," Climate Policy, Taylor & Francis Journals, vol. 14(4), pages 507-524, July.
    5. Qin, Quande & Liu, Yuan & Huang, Jia-Ping, 2020. "A cooperative game analysis for the allocation of carbon emissions reduction responsibility in China's power industry," Energy Economics, Elsevier, vol. 92(C).
    6. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    7. Schmidt, Robert C. & Heitzig, Jobst, 2014. "Carbon leakage: Grandfathering as an incentive device to avert firm relocation," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 209-223.
    8. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
    9. Zhang, Yue-Jun & Wang, Ao-Dong & Tan, Weiping, 2015. "The impact of China's carbon allowance allocation rules on the product prices and emission reduction behaviors of ETS-covered enterprises," Energy Policy, Elsevier, vol. 86(C), pages 176-185.
    10. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
    11. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    12. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    13. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    14. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    15. Lins, Marcos P. Estellita & Gomes, Eliane G. & Soares de Mello, Joao Carlos C. B. & Soares de Mello, Adelino Jose R., 2003. "Olympic ranking based on a zero sum gains DEA model," European Journal of Operational Research, Elsevier, vol. 148(2), pages 312-322, July.
    16. Guo, Ji & Zhao, Mengke & Wu, Xianhua & Shi, Beibei & Santibanez Gonzalez, Ernesto D.R., 2021. "Study on the distribution of PM emission rights in various provinces of China based on a new efficiency and equity two-objective DEA model," Ecological Economics, Elsevier, vol. 183(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiping Wang & Peiling Liu, 2024. "Characteristics of the urban environmental regulation network and its impact on carbon emission efficiency in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    2. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    3. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
    4. Shi, Wei & Li, Wei & Qiao, Fuwei & Wang, Weijuan & An, Yi & Zhang, Guowei, 2023. "An inter-provincial carbon quota study in China based on the contribution of clean energy to carbon reduction," Energy Policy, Elsevier, vol. 182(C).
    5. Yang, Mian & Hou, Yaru & Fang, Chao & Duan, Hongbo, 2020. "Constructing energy-consuming right trading system for China's manufacturing industry in 2025," Energy Policy, Elsevier, vol. 144(C).
    6. Jiekun Song & Rui Chen & Xiaoping Ma, 2022. "Provincial Allocation of Energy Consumption, Air Pollutant and CO 2 Emission Quotas in China: Based on a Weighted Environment ZSG-DEA Model," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    7. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    8. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    9. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    10. Xiaohong Liu & Qingchun Meng & Ruiqi Sun & Xiangwei Zhang, 2024. "A Novel Centralized Allocation Data Envelopment Analysis Model for Carbon Emission Allocation Under a Heterogeneous Abatement Cost: Application Within the Chinese Industrial Sector," Mathematics, MDPI, vol. 12(21), pages 1-27, October.
    11. Qinliang Tan & Jin Zheng & Yihong Ding & Yimei Zhang, 2020. "Provincial Carbon Emission Quota Allocation Study in China from the Perspective of Abatement Cost and Regional Cooperation," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    12. Anyu Yu & Hao Zhang & Hu-chen Liu & Yu Shi & Weilong Bi, 2024. "Dynamic centralized resource allocation approach with contextual impacts: analyzing Chinese carbon allocation plans," Annals of Operations Research, Springer, vol. 341(1), pages 451-483, October.
    13. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    14. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
    15. Xin Zheng & Shenya Mao & Siqi Lv & Sheng Wang, 2022. "An Optimization Study of Provincial Carbon Emission Allowance Allocation in China Based on an Improved Dynamic Zero-Sum-Gains Slacks-Based-Measure Model," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
    16. Zhang, Yanfang & Wei, Jinpeng & Gao, Qi & Shi, Xunpeng & Zhou, Dequn, 2022. "Coordination between the energy-consumption permit trading scheme and carbon emissions trading: Evidence from China," Energy Economics, Elsevier, vol. 116(C).
    17. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    18. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    19. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
    20. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5201-:d:802103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.