[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6100-d391543.html
   My bibliography  Save this article

Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities

Author

Listed:
  • Syed Hammad Mian

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

  • Bashir Salah

    (Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Wadea Ameen

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

  • Khaja Moiduddin

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

  • Hisham Alkhalefah

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract
The emergence of Industry 4.0, also referred to as the fourth industrial revolution, has entirely transformed how the industry or business functions and evolves. It can be attributed to its broadening focus on automation, decentralization, system integration, cyber-physical systems, etc. Its implementation promises numerous benefits in terms of higher productivity, greater volatility, better control and streamlining of processes, accelerated enterprise growth, sustainable development, etc. Despite the worldwide recognition and realization of Industry 4.0, its holistic adoption is constrained by the requirements of specific skills among the workforce. The personnel are expected to acquire adaptive thinking, cognitive and computational skills, predominantly in the area of information technology, data analytics, etc. Thus, the universities that laid the foundation for future talents or trends in society have to adapt and modernize the existing programs, facilities, and infrastructure. This reshaping of higher education in consonance with the vision of Industry 4.0 possesses its opportunities and challenges. There are, of course, a multitude of factors involved and they need a reasonable assessment to strategically plan this metamorphosis. Therefore, this work aims to explore and analyze the different factors that influence the progression and enactment of Industry 4.0 in universities for sustainable education. For this purpose, a systematic approach based on a questionnaire as well as a SWOT (strengths (S), weaknesses (W), opportunities (O), and threats (T)) integrated with the analytic hierarchy process (AHP) is adopted. The questionnaires are administered to university employees and students (or stakeholders) to assess their viewpoint, as well as to estimate the priority values for individual factors to be included in SWOT. The AHP is implemented to quantify the different factors in terms of weights using a pairwise comparison matrix. Finally, the SWOT matrix is established depending on the questionnaire assessment and the AHP weights to figure out stakeholders’ perspectives, in addition to the needed strategic scheme. The SWOT implementation of this research proposes an aggressive approach for universities, where they must make full use of their strengths to take advantage of the emerging opportunities in Industry 4.0. The results also indicate that there are fundamental requirements for universities in Industry 4.0, including effective financial planning, skilled staff, increased industrial partnerships, advanced infrastructure, revised curricula, and insightful workshops. This investigation undoubtedly underlines the importance of practical expertise and the implementation of digital technologies at the university level to empower novices with the requisite skills and a competitive advantage for Industry 4.0.

Suggested Citation

  • Syed Hammad Mian & Bashir Salah & Wadea Ameen & Khaja Moiduddin & Hisham Alkhalefah, 2020. "Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities," Sustainability, MDPI, vol. 12(15), pages 1-33, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6100-:d:391543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamran, Muhammad & Fazal, Muhammad Rayyan & Mudassar, Muhammad, 2020. "Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis," Renewable Energy, Elsevier, vol. 146(C), pages 543-558.
    2. Brunnhofer, Magdalena & Gabriella, Natasha & Schöggl, Josef-Peter & Stern, Tobias & Posch, Alfred, 2020. "The biorefinery transition in the European pulp and paper industry – A three-phase Delphi study including a SWOT-AHP analysis," Forest Policy and Economics, Elsevier, vol. 110(C).
    3. Yong-Jeong Kim & Jaehun Park, 2019. "A Sustainable Development Strategy for the Uzbekistan Textile Industry: The Results of a SWOT-AHP Analysis," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    4. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    5. Shrestha, Ram K. & Alavalapati, Janaki R. R. & Kalmbacher, Robert S., 2004. "Exploring the potential for silvopasture adoption in south-central Florida: an application of SWOT-AHP method," Agricultural Systems, Elsevier, vol. 81(3), pages 185-199, September.
    6. D'Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport," Energy Policy, Elsevier, vol. 138(C).
    7. repec:wuk:andedp:9711 is not listed on IDEAS
    8. Kurttila, Mikko & Pesonen, Mauno & Kangas, Jyrki & Kajanus, Miika, 2000. "Utilizing the analytic hierarchy process (AHP) in SWOT analysis -- a hybrid method and its application to a forest-certification case," Forest Policy and Economics, Elsevier, vol. 1(1), pages 41-52, May.
    9. Katarína Stachová & Ján Papula & Zdenko Stacho & Lucia Kohnová, 2019. "External Partnerships in Employee Education and Development as the Key to Facing Industry 4.0 Challenges," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    10. Chen, Wei-Ming & Kim, Hana & Yamaguchi, Hideka, 2014. "Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan," Energy Policy, Elsevier, vol. 74(C), pages 319-329.
    11. Tortorella, Guilherme Luz & Cawley Vergara, Alejandro Mac & Garza-Reyes, Jose Arturo & Sawhney, Rapinder, 2020. "Organizational learning paths based upon industry 4.0 adoption: An empirical study with Brazilian manufacturers," International Journal of Production Economics, Elsevier, vol. 219(C), pages 284-294.
    12. Iva Vuksanović Herceg & Vukašin Kuč & Veljko M. Mijušković & Tomislav Herceg, 2020. "Challenges and Driving Forces for Industry 4.0 Implementation," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    13. Genia Nagara & Wei-Haur Lam & Nasha Lee & Faridah Othman & Md Shaaban, 2015. "Comparative SWOT Analysis for Water Solutions in Asia and Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 125-138, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Paszkiewicz & Mateusz Salach & Paweł Dymora & Marek Bolanowski & Grzegorz Budzik & Przemysław Kubiak, 2021. "Methodology of Implementing Virtual Reality in Education for Industry 4.0," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    2. Ghannouchi, Imen, 2023. "Examining the dynamic nexus between industry 4.0 technologies and sustainable economy: New insights from empirical evidence using GMM estimator across 20 OECD nations," Technology in Society, Elsevier, vol. 75(C).
    3. Alberto Paucar‐Caceres & Melissa Franchini Cavalcanti‐Bandos & Silvia Cristina Quispe‐Prieto & Lucero Nicole Huerta‐Tantalean & Katarzyna Werner‐Masters, 2022. "Using soft systems methodology to align community projects with sustainability development in higher education stakeholders' networks in a Brazilian university," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(4), pages 750-764, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çağlar Kıvanç Kaymaz & Salih Birinci & Yusuf Kızılkan, 2022. "Sustainable development goals assessment of Erzurum province with SWOT-AHP analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 2986-3012, March.
    2. Tahseen, Samiha & Karney, Bryan, 2017. "Opportunities for increased hydropower diversion at Niagara: An sSWOT analysis," Renewable Energy, Elsevier, vol. 101(C), pages 757-770.
    3. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    4. Haque, H.M. Enamul & Dhakal, Shobhakar & Mostafa, S.M.G., 2020. "An assessment of opportunities and challenges for cross-border electricity trade for Bangladesh using SWOT-AHP approach," Energy Policy, Elsevier, vol. 137(C).
    5. Collins Okello & Stefania Pindozzi & Salvatore Faugno & Lorenzo Boccia, 2014. "Appraising Bioenergy Alternatives in Uganda Using Strengths, Weaknesses, Opportunities and Threats (SWOT)-Analytical Hierarchy Process (AHP) and a Desirability Functions Approach," Energies, MDPI, vol. 7(3), pages 1-22, February.
    6. Kukrety, Sidhanand & Dwivedi, Puneet & Jose, Shibu & Alavalapati, Janaki R.R., 2013. "Stakeholders' perceptions on developing sustainable Red Sanders (Pterocarpus santalinus L.) wood trade in Andhra Pradesh, India," Forest Policy and Economics, Elsevier, vol. 26(C), pages 43-53.
    7. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    8. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    9. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    10. Chabi Simin Najib Dafia & Fei Chen & Peter Davis Sumo, 2022. "Guideline and Strategies of Textile Industry on the Sustainable Development of Benin," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    11. Sepehr Ghazinoory & Mansoureh Abdi & Mandana Azadegan-Mehr, 2010. "Swot Methodology: A State-of-the-Art Review for the Past, A Framework for the Future," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 12(1), pages 24-48, November.
    12. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Zelin Liu & Xiyan Duan & Hongling Cheng & Zhaoran Liu & Ping Li & Yang Zhang, 2023. "Empowering High-Quality Development of the Chinese Sports Education Market in Light of the “Double Reduction” Policy: A Hybrid SWOT-AHP Analysis," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    14. Kaytez, Fazıl, 2022. "Evaluation of priority strategies for the expansion of installed wind power capacity in Turkey using a fuzzy analytic network process analysis," Renewable Energy, Elsevier, vol. 196(C), pages 1281-1293.
    15. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    16. Alexandra Lenis Escobar & Ramón Rueda López & Jorge E. García Guerrero & Enrique Salinas Cuadrado, 2020. "Design of Strategies for the Implementation and Management of a Complementary Monetary System Using the SWOT-AHP Methodology," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    17. Dwivedi, Puneet & Alavalapati, Janaki R.R., 2009. "Stakeholders' perceptions on forest biomass-based bioenergy development in the southern US," Energy Policy, Elsevier, vol. 37(5), pages 1999-2007, May.
    18. Brunnhofer, Magdalena & Gabriella, Natasha & Schöggl, Josef-Peter & Stern, Tobias & Posch, Alfred, 2020. "The biorefinery transition in the European pulp and paper industry – A three-phase Delphi study including a SWOT-AHP analysis," Forest Policy and Economics, Elsevier, vol. 110(C).
    19. Claudio Fagarazzi & Francesco Riccioli & Mario Cozzi & Severino Romano & Mauro Viccaro & Toufic El Asmar & Jean Pierre El Asmar & Roberto Fratini, 2015. "SWOT-AHP Dynamic Approach to Define Medium Term Strategies to Develop Forest Quality Chain and Forest Energy Chain in Tuscany," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2015(2), pages 113-130.
    20. Pournabi, Nima & Janatrostami, Somaye & Ashrafzadeh, Afshin & Mohammadi, Kourosh, 2021. "Resolution of Internal conflicts for conservation of the Hour Al-Azim wetland using AHP-SWOT and game theory approach," Land Use Policy, Elsevier, vol. 107(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6100-:d:391543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.