[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5544-d274362.html
   My bibliography  Save this article

Individually Optimized Commercial Road Transport: A Decision Support System for Customizable Routing Problems

Author

Listed:
  • Max Leyerer

    (School of Economics and Management, Leibniz University Hannover, 30167 Hannover, Germany)

  • Marc-Oliver Sonneberg

    (School of Economics and Management, Leibniz University Hannover, 30167 Hannover, Germany)

  • Maximilian Heumann

    (School of Economics and Management, Leibniz University Hannover, 30167 Hannover, Germany)

  • Tim Kammann

    (School of Economics and Management, Leibniz University Hannover, 30167 Hannover, Germany)

  • Michael H. Breitner

    (School of Economics and Management, Leibniz University Hannover, 30167 Hannover, Germany)

Abstract
The Vehicle Routing Problem (VRP) in its manifold variants is widely discussed in scientific literature. We investigate related optimization models and solution methods to determine the state of research for vehicle routing attributes and their combinations. Most of these approaches are idealized and focus on single problem-tailored routing applications. Addressing this research gap, we present a customizable VRP for optimized road transportation embedded into a Decision Support System (DSS). It integrates various model attributes and handles a multitude of real-world routing problems. In the context of urban logistics, practitioners of different industries and researchers are assisted in efficient route planning that allows for minimizing driving distances and reducing vehicle emissions. Based on the design science research methodology, we evaluate the DSS with computational benchmarks and real-world simulations. Results indicate that our developed DSS can compete with problem-tailored algorithms. With our solution-oriented DSS as final artifact, we contribute to an enhanced economic and environmental sustainability in urban logistic applications.

Suggested Citation

  • Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Tim Kammann & Michael H. Breitner, 2019. "Individually Optimized Commercial Road Transport: A Decision Support System for Customizable Routing Problems," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5544-:d:274362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafael E. Aleman & Xinhui Zhang & Raymond R. Hill, 2009. "A ring-based diversification scheme for routing problems," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 1(1/2), pages 163-190.
    2. J. M. Belenguer & M. C. Martinez & E. Mota, 2000. "A Lower Bound for the Split Delivery Vehicle Routing Problem," Operations Research, INFORMS, vol. 48(5), pages 801-810, October.
    3. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    4. Christian Prins & Caroline Prodhon & Angel Ruiz & Patrick Soriano & Roberto Wolfler Calvo, 2007. "Solving the Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search Heuristic," Transportation Science, INFORMS, vol. 41(4), pages 470-483, November.
    5. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    6. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    7. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    8. Rasmussen, Matias Sevel & Justesen, Tor & Dohn, Anders & Larsen, Jesper, 2012. "The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies," European Journal of Operational Research, Elsevier, vol. 219(3), pages 598-610.
    9. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    10. Julia Rieck & Jürgen Zimmermann, 2010. "A new mixed integer linear model for a rich vehicle routing problem with docking constraints," Annals of Operations Research, Springer, vol. 181(1), pages 337-358, December.
    11. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    12. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    13. Alberto Ceselli & Giovanni Righini & Matteo Salani, 2009. "A Column Generation Algorithm for a Rich Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 43(1), pages 56-69, February.
    14. Chuck Holland & Jack Levis & Ranganath Nuggehalli & Bob Santilli & Jeff Winters, 2017. "UPS Optimizes Delivery Routes," Interfaces, INFORMS, vol. 47(1), pages 8-23, February.
    15. Attila A. Kovacs & Bruce L. Golden & Richard F. Hartl & Sophie N. Parragh, 2015. "The Generalized Consistent Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 796-816, November.
    16. Angel Ibeas & Jose L. Moura & Luigi dell'Olio, 2009. "Planning school transport: design of routes with flexible school opening times," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(6), pages 527-544, September.
    17. Pedro Amorim & Sophie Parragh & Fabrício Sperandio & Bernardo Almada-Lobo, 2014. "A rich vehicle routing problem dealing with perishable food: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 489-508, July.
    18. Richard Hartl & Geir Hasle & Gerrit Janssens, 2006. "Special issue on Rich Vehicle Routing Problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(2), pages 103-104, June.
    19. J-F Cordeau & M Gendreau & G Laporte & J-Y Potvin & F Semet, 2002. "A guide to vehicle routing heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 512-522, May.
    20. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    21. Stenger, A. & Schneider, M. & Goeke, D., 2013. "The Prize-Collecting Vehicle Routing Problem with Single and Multiple Depots and Non-Linear Cost," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62372, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    22. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    23. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    24. Rais, A. & Alvelos, F. & Carvalho, M.S., 2014. "New mixed integer-programming model for the pickup-and-delivery problem with transshipment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 530-539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    2. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    3. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    4. Drexl, M. & Schneider, M., 2014. "A Survey of the Standard Location-Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65940, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    6. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    7. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    8. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    9. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    10. Tobias Harks & Felix G König & Jannik Matuschke, 2013. "Approximation Algorithms for Capacitated Location Routing," Transportation Science, INFORMS, vol. 47(1), pages 3-22, February.
    11. Ines Sbai & Saoussen Krichen & Olfa Limam, 2022. "Two meta-heuristics for solving the capacitated vehicle routing problem: the case of the Tunisian Post Office," Operational Research, Springer, vol. 22(1), pages 507-549, March.
    12. Kramer, Raphael & Cordeau, Jean-François & Iori, Manuel, 2019. "Rich vehicle routing with auxiliary depots and anticipated deliveries: An application to pharmaceutical distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 162-174.
    13. Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Michael H. Breitner, 2019. "Decision support for sustainable and resilience-oriented urban parcel delivery," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 267-300, November.
    14. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    15. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    16. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    17. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    18. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    19. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    20. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5544-:d:274362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.