[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6471-d570148.html
   My bibliography  Save this article

Determining Optimal Dry Port Location for Seaport Rijeka Using AHP Decision-Making Methodology

Author

Listed:
  • Josip Božičević

    (Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia)

  • Ivica Lovrić

    (City of Zagreb, 10000 Zagreb, Croatia)

  • Dajana Bartulović

    (Institute of Traffic and Communications, 10000 Zagreb, Croatia)

  • Sanja Steiner

    (Traffic Institute, Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia)

  • Violeta Roso

    (Department of Technology Management and Economics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden)

  • Jasmina Pašagić Škrinjar

    (Department of Transportation Logistics, Faculty of Traffic and Transport Sciences, University of Zagreb, 10000 Zagreb, Croatia)

Abstract
Seaport Rijeka is located and connected to the strategic EU TEN-T transport routes (Mediterranean and Baltic–Adriatic Corridor). Seaport Rijeka represents the shortest connection between Central and Central-Eastern Europe, and overseas destinations, by land and sea, and is in an excellent position to take advantage of its location. Being the largest and busiest seaport in Croatia, with constant increase in cargo traffic, especially container traffic, with inadequate and incomplete transport infrastructure that creates congestion, Seaport Rijeka will soon reach its capacity limits. One of the possible solutions that would satisfy the increasing demand and mitigate existing problems is establishing a dry port. Establishing a dry port serving Seaport Rijeka on the EU transport routes would greatly contribute to the strategic and operational plans of the EU and Croatia. The focus of this paper is to determine the optimal dry port location for Seaport Rijeka. The AHP methodology was used to determine the optimal dry port location of the Seaport Rijeka, by analyzing a large set of influential factors. The analysis was performed for three groups of possible dry port locations (close, medium distance and distant). Results suggest that optimal dry port locations for Seaport Rijeka are in Miklavlje, Velika Gorica and Vinkovci.

Suggested Citation

  • Josip Božičević & Ivica Lovrić & Dajana Bartulović & Sanja Steiner & Violeta Roso & Jasmina Pašagić Škrinjar, 2021. "Determining Optimal Dry Port Location for Seaport Rijeka Using AHP Decision-Making Methodology," Sustainability, MDPI, vol. 13(11), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6471-:d:570148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ballis, Athanasios & Golias, John, 2002. "Comparative evaluation of existing and innovative rail-road freight transport terminals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 593-611, August.
    2. Violeta Roso & Kent Lumsden, 2010. "A review of dry ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 12(2), pages 196-213, June.
    3. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    4. Roso, Violeta & Woxenius, Johan & Lumsden, Kenth, 2009. "The dry port concept: connecting container seaports with the hinterland," Journal of Transport Geography, Elsevier, vol. 17(5), pages 338-345.
    5. Turan Arslan, 2009. "A hybrid model of fuzzy and AHP for handling public assessments on transportation projects," Transportation, Springer, vol. 36(1), pages 97-112, January.
    6. Jihong Chen & Yijie Fei & Fangwei Zhang & Chutao Jing, 2018. "Evaluating Correlations between a Seaport and Its Dry Ports: Case Study of Xiamen Port in China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-16, June.
    7. Wilmsmeier, Gordon & Monios, Jason & Lambert, Bruce, 2011. "The directional development of intermodal freight corridors in relation to inland terminals," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1379-1386.
    8. Ciortescu Cezar-Gabriel, 2010. "Performance Assessment In Operating Dry Ports," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(2), pages 934-938, December.
    9. Judit Oláh & Steffen Nestler & Thomas Nobel & Mónika Harangi-Rákos & József Popp, 2018. "Development of dry ports in Europe," International Journal of Applied Management Science, Inderscience Enterprises Ltd, vol. 10(4), pages 269-289.
    10. Wang, Grace W.Y. & Zeng, Qingcheng & Li, Kevin & Yang, Jinglei, 2016. "Port connectivity in a logistic network: The case of Bohai Bay, China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 341-354.
    11. Bask, Anu & Roso, Violeta & Andersson, Dan & Hämäläinen, Erkki, 2014. "Development of seaport–dry port dyads: two cases from Northern Europe," Journal of Transport Geography, Elsevier, vol. 39(C), pages 85-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantina Anastasiadou & Nikolaos Gavanas & Christos Pyrgidis & Magda Pitsiava-Latinopoulou, 2021. "Identifying and Prioritizing Sustainable Urban Mobility Barriers through a Modified Delphi-AHP Approach," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    2. Huifang Li & Yin Wang, 2023. "Hierarchical Multimodal Hub Location Problem with Carbon Emissions," Sustainability, MDPI, vol. 15(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Almeida Rodrigues, Thiago & Maria de Miranda Mota, Caroline & Manuele dos Santos, Inez, 2021. "Determining dry port criteria that support decision making," Research in Transportation Economics, Elsevier, vol. 88(C).
    2. Alena Khaslavskaya & Violeta Roso, 2020. "Dry ports: research outcomes, trends, and future implications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(2), pages 265-292, June.
    3. Erica Varese & Danilo Stefano Marigo & Mariarosaria Lombardi, 2020. "Dry Port: A Review on Concept, Classification, Functionalities and Technological Processes," Logistics, MDPI, vol. 4(4), pages 1-16, November.
    4. Alena Khaslavskaya & Violeta Roso, 2019. "Outcome-Driven Supply Chain Perspective on Dry Ports," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    5. Yang, Dong & Notteboom, Theo & Zhou, Xin, 2021. "Spatial, temporal and institutional characteristics of entry strategies in inland container terminals: A comparison between Yangtze River and Rhine River," Journal of Transport Geography, Elsevier, vol. 90(C).
    6. Witte, Patrick & Wiegmans, Bart & Ng, Adolf K.Y., 2019. "A critical review on the evolution and development of inland port research," Journal of Transport Geography, Elsevier, vol. 74(C), pages 53-61.
    7. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.
    8. Felix Kin Peng Hui & Lu Aye & Colin F. Duffield, 2019. "Engaging Employees with Good Sustainability: Key Performance Indicators for Dry Ports," Sustainability, MDPI, vol. 11(10), pages 1-11, May.
    9. Qiu, Xuan & Lee, Chung-Yee, 2019. "Quantity discount pricing for rail transport in a dry port system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 563-580.
    10. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2020. "Dry Port Terminal Location Selection by Applying the Hybrid Grey MCDM Model," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    11. Bergqvist, Rickard & Monios, Jason, 2021. "Drivers for migration of an intermodal network hub from a port to an inland terminal," Journal of Transport Geography, Elsevier, vol. 91(C).
    12. Bask, Anu & Roso, Violeta & Andersson, Dan & Hämäläinen, Erkki, 2014. "Development of seaport–dry port dyads: two cases from Northern Europe," Journal of Transport Geography, Elsevier, vol. 39(C), pages 85-95.
    13. Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.
    14. Witte, Patrick & Wiegmans, Bart & Roso, Violeta & Hall, Peter V., 2020. "Moving beyond land and water: Understanding the development and spatial organization of inland ports," Journal of Transport Geography, Elsevier, vol. 84(C).
    15. Monios, Jason & Wilmsmeier, Gordon, 2012. "Giving a direction to port regionalisation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1551-1561.
    16. Monios, Jason, 2011. "The role of inland terminal development in the hinterland access strategies of Spanish ports," Research in Transportation Economics, Elsevier, vol. 33(1), pages 59-66.
    17. Lättilä, Lauri & Henttu, Ville & Hilmola, Olli-Pekka, 2013. "Hinterland operations of sea ports do matter: Dry port usage effects on transportation costs and CO2 emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 23-42.
    18. Liu, Weichen & Cao, Youhui & Chen, Jianglong & Guo, Jiaying & Liang, Shuangbo, 2023. "Organization of river-sea container transportation in the Yangtze River: Processes and mechanisms," Journal of Transport Geography, Elsevier, vol. 108(C).
    19. Wan, Shulin & Luan, Weixin & Chen, Yuying & Lin, Qiaoqiao, 2022. "Influence of dry ports construction on seaport growth: Case of Ningbo Zhoushan Port," Transport Policy, Elsevier, vol. 117(C), pages 40-47.
    20. Jordi Caballé Valls & Peter W. Langen & Lorena García Alonso & José Ángel Vallejo Pinto, 2020. "Understanding Port Choice Determinants and Port Hinterlands: Findings from an Empirical Analysis of Spain," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(1), pages 53-67, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6471-:d:570148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.