[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i6p113-d1173035.html
   My bibliography  Save this article

Uncovering Hidden Insights with Long-Memory Process Detection: An In-Depth Overview

Author

Listed:
  • Hossein Hassani

    (The Research Institute of Energy Management and Planning (RIEMP), University of Tehran, Tehran 19395-4697, Iran)

  • Masoud Yarmohammadi

    (Department of Statistics, Payame Noor University, Tehran 19395-4697, Iran)

  • Leila Marvian Mashhad

    (Department of Statistics, Payame Noor University, Tehran 19395-4697, Iran)

Abstract
Long-memory models are frequently used in finance and other fields to capture long-range dependence in time series data. However, correctly identifying whether a process has long memory is crucial. This paper highlights a significant limitation in using the sample autocorrelation function (ACF) to identify long-memory processes. While the ACF establishes the theoretical definition of a long-memory process, it is not possible to determine long memory by summing the sample ACFs. Hassani’s − 1 2 theorem demonstrates that the sum of the sample ACF is always − 1 2 for any stationary time series with any length, rendering any diagnostic or analysis procedures that include this sum open to criticism. The paper presents several cases where discrepancies between the empirical and theoretical use of a long-memory process are evident, based on real and simulated time series. It is critical to be aware of this limitation when developing models and forecasting. Accurately identifying long-memory processes is essential in producing reliable predictions and avoiding incorrect model specification.

Suggested Citation

  • Hossein Hassani & Masoud Yarmohammadi & Leila Marvian Mashhad, 2023. "Uncovering Hidden Insights with Long-Memory Process Detection: An In-Depth Overview," Risks, MDPI, vol. 11(6), pages 1-15, June.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:6:p:113-:d:1173035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/6/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/6/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    2. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    3. David E. Rapach & Jack K. Strauss & Mark E. Wohar, 2008. "Chapter 10 Forecasting Stock Return Volatility in the Presence of Structural Breaks," Frontiers of Economics and Globalization, in: Forecasting in the Presence of Structural Breaks and Model Uncertainty, pages 381-416, Emerald Group Publishing Limited.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    2. Esteve, Vicente & Prats, María A., 2023. "Testing explosive bubbles with time-varying volatility: The case of Spanish public debt," Finance Research Letters, Elsevier, vol. 51(C).
    3. Kejin Wu & Sayar Karmakar & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Stock Market Volatility Over a Century in an Emerging Market Economy: The Case of South Africa," Working Papers 202326, University of Pretoria, Department of Economics.
    4. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    5. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    6. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    7. Paul De Grauwe & Marianna Grimaldi, 2014. "Heterogeneity of Agents, Transactions Costs and the Exchange Rate," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 2, pages 33-70, World Scientific Publishing Co. Pte. Ltd..
    8. Assaf, Ata & Demir, Ender & Ersan, Oguz, 2024. "Detecting and date-stamping bubbles in fan tokens," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 98-113.
    9. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    10. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    11. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    13. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    14. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    15. Paul De Grauwe & Pablo Rovira Kaltwasser, 2006. "A Behavioral Finance Model of the Exchange Rate with Many Forecasting Rules," CESifo Working Paper Series 1849, CESifo.
    16. Tedeschi, Gabriele & Gallegati, Mauro & Mignot, Sylvain & Vignes, Annick, 2012. "Lost in transactions: The case of the Boulogne s/mer fish market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1400-1407.
    17. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    18. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    19. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    20. Bischi, Gian-Italo & Gallegati, Mauro & Gardini, Laura & Leombruni, Roberto & Palestrini, Antonio, 2006. "Herd Behavior And Nonfundamental Asset Price Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 10(4), pages 502-528, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:6:p:113-:d:1173035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.