[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i1p42-d475089.html
   My bibliography  Save this article

The Methodology for Supporting Land Use Management in Collective Housing towards Achieving Energy Efficiency: A Case Study of New Belgrade, Serbia

Author

Listed:
  • Ranka Gajić

    (Faculty of Traffic and Transport, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia)

  • Darinka Golubović-Matić

    (Faculty of Civil Engineering, Union University—Nikola Tesla, Cara Dušana 62-64, 11000 Belgrade, Serbia)

  • Biserka Mitrović

    (Faculty of Architecture, University of Belgrade, Bulevar kralja Aleksandra 73/2, 11000 Belgrade, Serbia)

  • Svetlana Batarilo

    (Faculty of Traffic and Transport, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia)

  • Milena Kordić

    (Faculty of Architecture, University of Belgrade, Bulevar kralja Aleksandra 73/2, 11000 Belgrade, Serbia)

Abstract
This paper aims to establish a methodology for urban land use planning and management that provides an insight into the hierarchy of priorities between a large number of activities for planning actions, thus contributing to the concept of energy-efficient housing. This methodology includes three aspects of sustainable development: Economic, ecologic, and social, which serve as an overall criterion within which urban planners could make assessments of planned activities. The assessments are the core of the methodology—every aspect is assessed by concerning its costs, consequences on the urban environment, and the effects on the citizens’ quality of life. Ten experts were involved to prove the methodology’s effectiveness. As a result, a hierarchy between the activities is created, which would help an urban planner prioritize and order further activities. The applicability of the hierarchy was tested through a simulation of a reconstruction process of a collective housing area in New Belgrade, Serbia, from the view-point of land use and accessibility. This methodology contributes to the creation of the prioritized groups of activities, and a finalized hierarchy of the activities, while its application is seen in the process of making urban plans, and defining recommendations for its implementation.

Suggested Citation

  • Ranka Gajić & Darinka Golubović-Matić & Biserka Mitrović & Svetlana Batarilo & Milena Kordić, 2021. "The Methodology for Supporting Land Use Management in Collective Housing towards Achieving Energy Efficiency: A Case Study of New Belgrade, Serbia," Land, MDPI, vol. 10(1), pages 1-25, January.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:42-:d:475089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/1/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/1/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ivan Simić & Aleksandra Stupar & Vladan Djokić, 2017. "Building the Green Infrastructure of Belgrade: The Importance of Community Greening," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    2. Edward Preweda & Elżbieta Jasińska, 2020. "Organization of the Building Space of Developments and Its Impact on Residential Housing Prices," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    3. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    4. Federico Amato & Biagio Antonio Maimone & Federico Martellozzo & Gabriele Nolè & Beniamino Murgante, 2016. "The Effects of Urban Policies on the Development of Urban Areas," Sustainability, MDPI, vol. 8(4), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oana Luca & Florian Gaman & Emanuel Răuță, 2021. "Towards a National Harmonized Framework for Urban Plans and Strategies in Romania," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    2. Fabrizio Battisti & Orazio Campo & Benedetto Manganelli, 2022. "Land Management in Territorial Planning: Analysis, Appraisal, Strategies for Sustainability—A Review of Studies and Research," Land, MDPI, vol. 11(7), pages 1-5, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuzana Pucherová & Regina Mišovičová & Gabriel Bugár & Henrich Grežo, 2021. "Changes in Landscape Structure in the Municipalities of the Nitra District (Slovak Republic) Due to Expanding Suburbanization," Sustainability, MDPI, vol. 13(3), pages 1-27, January.
    2. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    3. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    4. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    5. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    7. Qi-Gan Shao & James J. H. Liou & Sung-Shun Weng & Yen-Ching Chuang, 2018. "Improving the Green Building Evaluation System in China Based on the DANP Method," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    8. Xuejing Zheng & Boxiao Xu & Shijun You & Huan Zhang & Yaran Wang & Leizhai Sun, 2020. "Energy Consumption and CO 2 Emissions of Coach Stations in China," Energies, MDPI, vol. 13(14), pages 1-22, July.
    9. Xin Wu & Peng Cui, 2016. "A Study of the Time–Space Evolution Characteristics of Urban–Rural Integration Development in a Mountainous Area Based on ESDA-GIS: The Case of the Qinling-Daba Mountains in China," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
    10. Elżbieta Jasińska & Edward Preweda & Piotr Łazarz, 2023. "Renewable Energy Sources in the Residential Property Market, Exemplified by the City of Krakow (Poland)," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    11. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    12. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    13. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    14. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    15. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    16. Claudia Cosentino & Federico Amato & Beniamino Murgante, 2018. "Population-Based Simulation of Urban Growth: The Italian Case Study," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    17. Yijun Fu & Shicong Zhang & Xi Chen & Wei Xu, 2021. "Sino-American Building Energy Standards Comparison and Recommendations towards Zero Energy Building," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    18. Chao Ding & Nan Zhou, 2020. "Using Residential and Office Building Archetypes for Energy Efficiency Building Solutions in an Urban Scale: A China Case Study," Energies, MDPI, vol. 13(12), pages 1-16, June.
    19. Li, Xinyi & Yao, Runming & Li, Qin & Ding, Yong & Li, Baizhan, 2018. "An object-oriented energy benchmark for the evaluation of the office building stock," Utilities Policy, Elsevier, vol. 51(C), pages 1-11.
    20. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:42-:d:475089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.