[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14149-d957395.html
   My bibliography  Save this article

Exploring the Relationship between Built Environment and Commuting Mode Choice: Longitudinal Evidence from China

Author

Listed:
  • Chaoying Yin

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Xiaoquan Wang

    (College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)

  • Chunfu Shao

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Jianxiao Ma

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract
The literature has offered much evidence regarding associations between the built environment (BE) and commuting behavior. However, most prior studies are conducted based on cross-sectional samples from developed countries, and little is known about the longitudinal link between BE and commuting behavior. Based on two rounds of survey data from China, this study examines relationships of BE with commuting mode choice from both cross-sectional and longitudinal perspectives. The effects of life-cycle events are considered within a unified framework. Results of the longitudinal examination of BE and commuting mode shift largely support the cross-sectional analysis. Specifically, promoting more balanced land use and improving residential density are important for car use reductions and active travel initiatives. Meanwhile, more balanced land use improves the probability of commuting by motorcycle and electric bike, but reduces the probability of commuting by public transit. This study also highlights the remarkable role played by life-cycle events in affecting commuting mode shifts.

Suggested Citation

  • Chaoying Yin & Xiaoquan Wang & Chunfu Shao & Jianxiao Ma, 2022. "Exploring the Relationship between Built Environment and Commuting Mode Choice: Longitudinal Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14149-:d:957395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelcie M. Ralph & Anne E. Brown, 2019. "The role of habit and residential location in travel behavior change programs, a field experiment," Transportation, Springer, vol. 46(3), pages 719-734, June.
    2. Cao, Xinyu (Jason) & Mokhtarian, Patricia L. & Handy, Susan L., 2009. "The relationship between the built environment and nonwork travel: A case study of Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 548-559, June.
    3. Xinyu Cao & Patricia L Mokhtarian & Susan L Handy, 2007. "Cross-Sectional and Quasi-Panel Explorations of the Connection between the Built Environment and Auto Ownership," Environment and Planning A, , vol. 39(4), pages 830-847, April.
    4. Christiansen, Petter & Engebretsen, Øystein & Fearnley, Nils & Usterud Hanssen, Jan, 2017. "Parking facilities and the built environment: Impacts on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 198-206.
    5. Nasri, Arefeh & Zhang, Lei, 2019. "Multi-level urban form and commuting mode share in rail station areas across the United States; a seemingly unrelated regression approach," Transport Policy, Elsevier, vol. 81(C), pages 311-319.
    6. Yang, Shuo & Fan, Yingling & Deng, Wei & Cheng, Long, 2019. "Do built environment effects on travel behavior differ between household members? A case study of Nanjing, China," Transport Policy, Elsevier, vol. 81(C), pages 360-370.
    7. Doddamani, Chetan & Manoj, M. & Maurya, Yashasvi, 2021. "Geographical scale of residential relocation and its impacts on vehicle ownership and travel behavior," Journal of Transport Geography, Elsevier, vol. 94(C).
    8. Morgan, Njogu, 2020. "The stickiness of cycling: Residential relocation and changes in utility cycling in Johannesburg," Journal of Transport Geography, Elsevier, vol. 85(C).
    9. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    10. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge, 2018. "Exploring the Influence of Built Environment on Car Ownership and Use with a Spatial Multilevel Model: A Case Study of Changchun, China," IJERPH, MDPI, vol. 15(9), pages 1-14, August.
    11. Chakrabarti, Sandip & Joh, Kenneth, 2019. "The effect of parenthood on travel behavior: Evidence from the California Household Travel Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 101-115.
    12. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    13. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Lin, Tao & Wang, Donggen & Zhou, Meng, 2018. "Residential relocation and changes in travel behavior: what is the role of social context change?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 360-374.
    15. Sun, Bindong & Yan, Hong & Zhang, Tinglin, 2017. "Built environmental impacts on individual mode choice and BMI: Evidence from China," Journal of Transport Geography, Elsevier, vol. 63(C), pages 11-21.
    16. Abu Oakil & Dick Ettema & Theo Arentze & Harry Timmermans, 2014. "Changing household car ownership level and life cycle events: an action in anticipation or an action on occurrence," Transportation, Springer, vol. 41(4), pages 889-904, July.
    17. Sarjala, Satu, 2019. "Built environment determinants of pedestrians’ and bicyclists’ route choices on commute trips: Applying a new grid-based method for measuring the built environment along the route," Journal of Transport Geography, Elsevier, vol. 78(C), pages 56-69.
    18. Yang, Min & Wu, Jingxian & Rasouli, Soora & Cirillo, Cinzia & Li, Dawei, 2017. "Exploring the impact of residential relocation on modal shift in commute trips: Evidence from a quasi-longitudinal analysis," Transport Policy, Elsevier, vol. 59(C), pages 142-152.
    19. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chunjiao Dong, 2021. "Exploring the effects of the built environment on commuting mode choice in neighborhoods near public transit stations: evidence from China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 44(1), pages 111-127, January.
    20. Zhang, Rui & Yao, Enjian & Liu, Zhili, 2017. "School travel mode choice in Beijing, China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 98-110.
    21. De Vos, Jonas & Ettema, Dick & Witlox, Frank, 2018. "Changing travel behaviour and attitudes following a residential relocation," Journal of Transport Geography, Elsevier, vol. 73(C), pages 131-147.
    22. Zhao, Pengjun & Zhang, Yixue, 2018. "Travel behaviour and life course: Examining changes in car use after residential relocation in Beijing," Journal of Transport Geography, Elsevier, vol. 73(C), pages 41-53.
    23. Prawira Belgiawan & Jan-Dirk Schmöcker & Maya Abou-Zeid & Joan Walker & Tzu-Chang Lee & Dick Ettema & Satoshi Fujii, 2014. "Car ownership motivations among undergraduate students in China, Indonesia, Japan, Lebanon, Netherlands, Taiwan, and USA," Transportation, Springer, vol. 41(6), pages 1227-1244, November.
    24. Chiara Calastri & Romain Crastes dit Sourd & Stephane Hess, 2020. "We want it all: experiences from a survey seeking to capture social network structures, lifetime events and short-term travel and activity planning," Transportation, Springer, vol. 47(1), pages 175-201, February.
    25. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    26. Shen, Qing & Chen, Peng & Pan, Haixiao, 2016. "Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 31-44.
    27. Guo, Jia & Feng, Tao & Zhang, Junyi & Timmermans, Harry J.P., 2020. "Temporal interdependencies in mobility decisions over the life course: A household-level analysis using dynamic Bayesian networks," Journal of Transport Geography, Elsevier, vol. 82(C).
    28. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    29. Clark, Ben & Chatterjee, Kiron & Melia, Steve, 2016. "Changes to commute mode: The role of life events, spatial context and environmental attitude," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 89-105.
    30. Chaoying Yin & Chunfu Shao & Xiaoquan Wang, 2018. "Built Environment and Parking Availability: Impacts on Car Ownership and Use," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    31. Julia Janke & Calvin G. Thigpen & Susan Handy, 2021. "Examining the effect of life course events on modality type and the moderating influence of life stage," Transportation, Springer, vol. 48(2), pages 1089-1124, April.
    32. Mitra, Raktim & Buliung, Ron N., 2012. "Built environment correlates of active school transportation: neighborhood and the modifiable areal unit problem," Journal of Transport Geography, Elsevier, vol. 20(1), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yang & Samitha Samaranayake & Timur Dogan, 2023. "Assessing impacts of the built environment on mobility: A joint choice model of travel mode and duration," Environment and Planning B, , vol. 50(9), pages 2359-2375, November.
    2. Lan Wu & Xiaorui Yuan & Chaoyin Yin & Ming Yang & Hongjian Ouyang, 2023. "Car Ownership Behavior Model Considering Nonlinear Impacts of Multi-Scale Built Environment Characteristics," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoquan & Yin, Chaoying & Zhang, Junyi & Shao, Chunfu & Wang, Shengyou, 2021. "Nonlinear effects of residential and workplace built environment on car dependence," Journal of Transport Geography, Elsevier, vol. 96(C).
    2. Sheng, Lu & Wu, Xiao & He, Yan, 2023. "Impact of residential relocation on activity-travel behaviors between household couples: A case study of Kunming, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    3. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    4. Doddamani, Chetan & Manoj, M., 2022. "Residential relocation and changes in household vehicle ownership and travel behavior: Exploring the context of Hubli-Dharwad twin-cities in India from a planning viewpoint," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 134-155.
    5. Xiaoquan Wang & Weifeng Wang & Chaoying Yin, 2023. "Exploring the Relationships between Multilevel Built Environments and Commute Durations in Dual-Earner Households: Does Gender Matter?," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    6. Guan, Xiaodong & Wang, Donggen, 2020. "The multiplicity of self-selection: What do travel attitudes influence first, residential location or work place?," Journal of Transport Geography, Elsevier, vol. 87(C).
    7. Morgan, Njogu, 2020. "The stickiness of cycling: Residential relocation and changes in utility cycling in Johannesburg," Journal of Transport Geography, Elsevier, vol. 85(C).
    8. Shen, Tonggaochuan & Cheng, Long & Yang, Yongjiang & Deng, Jialin & Jin, Tanhua & Cao, Mengqiu, 2023. "Do residents living in transit-oriented development station catchment areas travel more sustainably? The impacts of life events," LSE Research Online Documents on Economics 118813, London School of Economics and Political Science, LSE Library.
    9. Ao, Yibin & Yang, Dujuan & Chen, Chuan & Wang, Yan, 2019. "Exploring the effects of the rural built environment on household car ownership after controlling for preference and attitude: Evidence from Sichuan, China," Journal of Transport Geography, Elsevier, vol. 74(C), pages 24-36.
    10. Xue, Fei & Yao, Enjian & Jin, Fanglei, 2020. "Exploring residential relocation behavior for families with workers and students; a study from Beijing, China," Journal of Transport Geography, Elsevier, vol. 89(C).
    11. Scheiner, Joachim, 2020. "Changes in travel mode use over the life course with partner interactions in couple households," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 791-807.
    12. Zhao, Pengjun & Zhang, Yixue, 2018. "Travel behaviour and life course: Examining changes in car use after residential relocation in Beijing," Journal of Transport Geography, Elsevier, vol. 73(C), pages 41-53.
    13. Richard Larouche & Ulises Charles Rodriguez & Ransimala Nayakarathna & David R. Scott, 2020. "Effect of Major Life Events on Travel Behaviours: A Scoping Review," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    14. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge, 2018. "Exploring the Influence of Built Environment on Car Ownership and Use with a Spatial Multilevel Model: A Case Study of Changchun, China," IJERPH, MDPI, vol. 15(9), pages 1-14, August.
    15. Rong, Peijun & Kwan, Mei-Po & Qin, Yaochen & Zheng, Zhicheng, 2022. "A review of research on low-carbon school trips and their implications for human-environment relationship," Journal of Transport Geography, Elsevier, vol. 99(C).
    16. Zhu, Pengyu & Zhao, Songnian & Jiang, Yanpeng, 2022. "Residential segregation, built environment and commuting outcomes: Experience from contemporary China," Transport Policy, Elsevier, vol. 116(C), pages 269-277.
    17. Xue, Fei & Yao, Enjian, 2022. "Impact analysis of residential relocation on ownership, usage, and carbon-dioxide emissions of private cars," Energy, Elsevier, vol. 252(C).
    18. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge & Wenjun Li, 2018. "Application of Bayesian Multilevel Models Using Small and Medium Size City in China: The Case of Changchun," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    19. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    20. van Wee, Bert & De Vos, Jonas & Maat, Kees, 2019. "Impacts of the built environment and travel behaviour on attitudes: Theories underpinning the reverse causality hypothesis," Journal of Transport Geography, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14149-:d:957395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.