[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1868-d525556.html
   My bibliography  Save this article

Techno-Economic Analysis of a Stand-Alone Hybrid System: Application in Donoussa Island, Greece

Author

Listed:
  • Michail Katsivelakis

    (Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece)

  • Dimitrios Bargiotas

    (Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece)

  • Aspassia Daskalopulu

    (Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece)

  • Ioannis P. Panapakidis

    (Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece)

  • Lefteri Tsoukalas

    (School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA)

Abstract
Hybrid Renewable Energy Systems (HRES) are an attractive solution for the supply of electricity in remote areas like islands and communities where grid extension is difficult. Hybrid systems combine renewable energy sources with conventional units and battery storage in order to provide energy in an off-grid or on-grid system. The purpose of this study is to examine the techno-economical feasibility and viability of a hybrid system in Donoussa island, Greece, in different scenarios. A techno-economic analysis was conducted for a hybrid renewable energy system in three scenarios with different percentages of adoption rate (20%, 50% and 100%)and with different system configurations. Using HOMER Pro software the optimal system configuration between the feasible configurations of each scenario was selected, based on lowest Net Present Cost (NPC), minimum Excess Electricity percentage, and Levelized Cost of Energy (LCoE). The results obtained by the simulation could offer some operational references for a practical hybrid system in Donoussa island. The simulation results confirm the application of a hybrid system with 0% of Excess Electricity, reasonable NPC and LCoE and a decent amount of renewable integration.

Suggested Citation

  • Michail Katsivelakis & Dimitrios Bargiotas & Aspassia Daskalopulu & Ioannis P. Panapakidis & Lefteri Tsoukalas, 2021. "Techno-Economic Analysis of a Stand-Alone Hybrid System: Application in Donoussa Island, Greece," Energies, MDPI, vol. 14(7), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1868-:d:525556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kapsali, M. & Anagnostopoulos, J.S. & Kaldellis, J.K., 2012. "Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives," Applied Energy, Elsevier, vol. 99(C), pages 430-444.
    2. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
    3. Sanajaoba Singh, Sarangthem & Fernandez, Eugene, 2018. "Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system," Energy, Elsevier, vol. 143(C), pages 719-731.
    4. Kalinci, Yildiz, 2015. "Alternative energy scenarios for Bozcaada island, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 468-480.
    5. Cozzolino, R. & Tribioli, L. & Bella, G., 2016. "Power management of a hybrid renewable system for artificial islands: A case study," Energy, Elsevier, vol. 106(C), pages 774-789.
    6. Giatrakos, G.P. & Tsoutsos, T.D. & Mouchtaropoulos, P.G. & Naxakis, G.D. & Stavrakakis, G., 2009. "Sustainable energy planning based on a stand-alone hybrid renewableenergy/hydrogen power system: Application in Karpathos island, Greece," Renewable Energy, Elsevier, vol. 34(12), pages 2562-2570.
    7. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    8. Ghenai, Chaouki & Bettayeb, Maamar, 2019. "Modelling and performance analysis of a stand-alone hybrid solar PV/Fuel Cell/Diesel Generator power system for university building," Energy, Elsevier, vol. 171(C), pages 180-189.
    9. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    10. Katsaprakakis, Dimitris Al & Voumvoulakis, Manolis, 2018. "A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives," Energy, Elsevier, vol. 161(C), pages 680-698.
    11. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Quraan, A. & Al-Mhairat, B., 2024. "Sizing and energy management of grid-connected hybrid renewable energy systems based on techno-economic predictive technique," Renewable Energy, Elsevier, vol. 228(C).
    2. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    3. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    4. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    5. Al-Quraan, A. & Al-Mhairat, B., 2024. "Economic predictive control-based sizing and energy management for grid-connected hybrid renewable energy systems," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rad, Mohammad Amin Vaziri & Ghasempour, Roghaye & Rahdan, Parisa & Mousavi, Soroush & Arastounia, Mehrdad, 2020. "Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran," Energy, Elsevier, vol. 190(C).
    2. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    3. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    5. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    6. Deepika Bishnoi & Harsh Chaturvedi, 2022. "Optimal Design of a Hybrid Energy System for Economic and Environmental Sustainability of Onshore Oil and Gas Fields," Energies, MDPI, vol. 15(6), pages 1-21, March.
    7. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A. & Nejlaoui, Mohamed, 2021. "Techno-economic evaluation of an off-grid health clinic considering the current and future energy challenges: A rural case study," Renewable Energy, Elsevier, vol. 169(C), pages 34-52.
    8. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    9. Katsaprakakis, Dimitris Al. & Dakanali, Irini & Condaxakis, Constantinos & Christakis, Dimitris G., 2019. "Comparing electricity storage technologies for small insular grids," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Li, Ximei & Gao, Jianmin & You, Shi & Zheng, Yi & Zhang, Yu & Du, Qian & Xie, Min & Qin, Yukun, 2022. "Optimal design and techno-economic analysis of renewable-based multi-carrier energy systems for industries: A case study of a food factory in China," Energy, Elsevier, vol. 244(PB).
    11. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    12. Tefera Mekonnen & Ramchandra Bhandari & Venkata Ramayya, 2021. "Modeling, Analysis and Optimization of Grid-Integrated and Islanded Solar PV Systems for the Ethiopian Residential Sector: Considering an Emerging Utility Tariff Plan for 2021 and Beyond," Energies, MDPI, vol. 14(11), pages 1-24, June.
    13. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Groppi, Daniele & Pfeifer, Antun & Garcia, Davide Astiaso & Krajačić, Goran & Duić, Neven, 2021. "A review on energy storage and demand side management solutions in smart energy islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Rusu, Eugen & Onea, Florin, 2019. "An assessment of the wind and wave power potential in the island environment," Energy, Elsevier, vol. 175(C), pages 830-846.
    16. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    17. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    18. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    19. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1868-:d:525556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.