[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8470-d703044.html
   My bibliography  Save this article

Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry

Author

Listed:
  • Leonardo Leoni

    (Department of Industrial Engineering (DIEF), University of Florence, Viale Morgagni, 40, 50134 Florence, Italy)

  • Alessandra Cantini

    (Department of Industrial Engineering (DIEF), University of Florence, Viale Morgagni, 40, 50134 Florence, Italy)

  • Filippo De Carlo

    (Department of Industrial Engineering (DIEF), University of Florence, Viale Morgagni, 40, 50134 Florence, Italy)

  • Marcello Salvio

    (DUEE-SPS-ESE Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Lungotevere Thaon di Revel, 76, 00196 Rome, Italy)

  • Chiara Martini

    (DUEE-SPS-ESE Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Lungotevere Thaon di Revel, 76, 00196 Rome, Italy)

  • Claudia Toro

    (DUEE-SPS-ESE Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Lungotevere Thaon di Revel, 76, 00196 Rome, Italy)

  • Fabrizio Martini

    (DUEE-SPS-ESE Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Lungotevere Thaon di Revel, 76, 00196 Rome, Italy)

Abstract
The foundry industry is regarded as one of the most energy-intensive industrial sector due to its energy consumption up to 9 MWh/ton of produced metal. As a result, many companies are trying to increase the energy efficiency of their foundry plants. Since many energy-saving technologies are proposed by manufacturers and the literature, choosing the most appropriate one is a difficult task. Moreover, being updated with the available energy-saving solutions is complicated because of the quick technology advances. Consequently, this paper aims at investigating the recent and future opportunities and investments for reducing the energy consumptions of the technologies of Italian foundry companies. Additionally, it aims at presenting a list of available technological solutions validated by Italian experts. To this end, the Energy Audits developed by 231 plants were analyzed to extract the implemented and planned interventions. Furthermore, the economic data available within the Energy Audits were studied to determine the advantages of a given technological solutions compared to the others. It emerged that the companies are strongly investing in increasing the efficiency of the auxiliary systems such as compressors and motors. The outcomes of this study can assist both researchers and energy managers in choosing the most appropriate energy-saving solutions.

Suggested Citation

  • Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8470-:d:703044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    2. Guo, Z.C. & Fu, Z.X., 2010. "Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China," Energy, Elsevier, vol. 35(11), pages 4356-4360.
    3. Ozawa, Leticia & Sheinbaum, Claudia & Martin, Nathan & Worrell, Ernst & Price, Lynn, 2002. "Energy use and CO2 emissions in Mexico's iron and steel industry," Energy, Elsevier, vol. 27(3), pages 225-239.
    4. Price, L & Sinton, J & Worrell, E & Phylipsen, D & Xiulian, H & Ji, L, 2002. "Energy use and carbon dioxide emissions from steel production in China," Energy, Elsevier, vol. 27(5), pages 429-446.
    5. Cabello Eras, Juan José & Sagastume Gutiérrez, Alexis & Sousa Santos, Vladimir & Cabello Ulloa, Mario Javier, 2020. "Energy management of compressed air systems. Assessing the production and use of compressed air in industry," Energy, Elsevier, vol. 213(C).
    6. Yih-Liang Chan, David & Yang, Kuang-Han & Lee, Jenq-Daw & Hong, Gui-Bing, 2010. "The case study of furnace use and energy conservation in iron and steel industry," Energy, Elsevier, vol. 35(4), pages 1665-1670.
    7. Renato M. Lazzarin & Marco Noro, 2017. "Energy efficiency opportunities in the service plants of cast iron foundries in Italy," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 96-109.
    8. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    9. Serge Roudier & Luis Delgado Sancho & Rainer Remus & Miguel Aguado-Monsonet, 2013. "Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control," JRC Research Reports JRC69967, Joint Research Centre.
    10. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    11. LECOMTE Thierry & FERRERIA DE LA FUENTE Jose Felix & NEUWAHL Frederik & CANOVA Michele & PINASSEAU Antoine & JANKOV Ivan & BRINKMANN Thomas & ROUDIER Serge & DELGADO SANCHO Luis, 2017. "Best Available Techniques (BAT) Reference Document for Large Combustion Plants. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)," JRC Research Reports JRC107769, Joint Research Centre.
    12. CUSANO Gianluca & RODRIGO GONZALO Miguel & FARRELL Frank & REMUS Rainer & ROUDIER Serge & DELGADO SANCHO Luis, 2017. "Best Available Techniques (BAT) Reference Document for the Non-Ferrous Metals Industries. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)," JRC Research Reports JRC107041, Joint Research Centre.
    13. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    14. Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
    15. Zhang, Jianling & Wang, Guoshun, 2008. "Energy saving technologies and productive efficiency in the Chinese iron and steel sector," Energy, Elsevier, vol. 33(4), pages 525-537.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saverio Ferraro & Alessandra Cantini & Leonardo Leoni & Filippo De Carlo, 2023. "Sustainable Logistics 4.0: A Study on Selecting the Best Technology for Internal Material Handling," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    2. Chiara Martini & Claudia Toro, 2022. "Special Issue “Industry and Tertiary Sectors towards Clean Energy Transition”," Energies, MDPI, vol. 15(11), pages 1-5, June.
    3. Thakare, Hitesh R. & Daspute, Pramod, 2024. "Enhancing energy conservation in power generation in a coal fired thermal power plant through comprehensive energy audit," Energy, Elsevier, vol. 301(C).
    4. Carlos Herce & Chiara Martini & Claudia Toro & Enrico Biele & Marcello Salvio, 2024. "Energy Efficiency Policies for Small and Medium-Sized Enterprises: A Review," Sustainability, MDPI, vol. 16(3), pages 1-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    2. Arens, Marlene & Worrell, Ernst & Schleich, Joachim, 2012. "Energy intensity development of the German iron and steel industry between 1991 and 2007," Energy, Elsevier, vol. 45(1), pages 786-797.
    3. Ansari, Nastaran & Seifi, Abbas, 2012. "A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry," Energy, Elsevier, vol. 43(1), pages 334-343.
    4. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    5. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    6. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
    7. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    8. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    9. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    10. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    11. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    12. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    13. Hidalgo, Ignacio & Szabo, Laszlo & Carlos Ciscar, Juan & Soria, Antonio, 2005. "Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model," Energy, Elsevier, vol. 30(5), pages 583-610.
    14. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    15. Komakech, A.J. & Sundberg, C. & Jönsson, H. & Vinnerås, B., 2015. "Life cycle assessment of biodegradable waste treatment systems for sub-Saharan African cities," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 100-110.
    16. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    17. Ke, Jing & Price, Lynn & McNeil, Michael & Khanna, Nina Zheng & Zhou, Nan, 2013. "Analysis and practices of energy benchmarking for industry from the perspective of systems engineering," Energy, Elsevier, vol. 54(C), pages 32-44.
    18. Johansson, Maria T. & Söderström, Mats, 2011. "Options for the Swedish steel industry – Energy efficiency measures and fuel conversion," Energy, Elsevier, vol. 36(1), pages 191-198.
    19. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
    20. Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8470-:d:703044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.